代码就不加高亮度了。不是特能算这复杂度,但走软件这条路是务必会算的。
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
分享到:
相关推荐
在这里,我们将从算法复杂度的概念开始,讨论算法复杂度的定义、描述增长趋势的方法、算法复杂度的考察方法、算法复杂度的上界和下界、Fibonacci 数列问题的解决方法等。 首先,算法复杂度是指问题随规模的增长算法...
算法复杂度分析算法复杂度分析算法复杂度分析算法复杂度分析算法复杂度分析算法复杂度分析
程序员应该掌握的算法复杂度速查表 这个总结非常方便 不仅形象地把各个算法对比开来 也特别利于面试前的复习。
### 算法复杂度计算方法 #### 一、时间复杂度 时间复杂度是用来评估算法执行速度的一个重要指标,通常用于衡量算法随输入数据规模(通常标记为n)的增长趋势。 ##### 1. 时间频度 - **定义**:算法执行过程中基本...
#### 四、算法复杂度分析 经过优化后,对于每个像素点,只需要执行一次加法和一次减法操作即可完成均值的计算。因此,整个算法的计算复杂度为 O(mn)。相较于传统方法,该算法大大降低了计算量,提高了效率。 #### ...
算法复杂度是衡量一个算法效率的重要指标,它主要关注在最坏、最好和平均情况下,算法执行时间或空间需求的增长趋势。理解算法复杂度对于优化程序性能和选择合适的算法至关重要。初学者在学习这一概念时,应从以下几...
《算法复杂度分析基础》 算法复杂度分析是评估算法效率的重要工具,主要涉及时间复杂度和空间复杂度两个方面。这门基础课程旨在教授如何分析算法在处理大规模数据时所需的资源,帮助开发者优化程序性能。 一、算法...
在计算机科学中,数据结构和算法的复杂度分析是至关重要的,因为它可以帮助我们评估程序的效率,预测其在大规模数据下的表现。以下是给定题目中涉及的一些知识点。 1. 大O符号(Big-Oh)表示法:大O符号是用来描述...
大O表示法是一种用于描述算法复杂度的数学符号,它可以帮助我们理解和比较不同算法的效率。本文将详细介绍大O表示法的基本概念、分类、以及如何使用它来分析和描述算法的复杂度。 大O表示法是理解和分析算法复杂度的...
在IT领域,算法复杂度是衡量程序效率的重要标准,它主要关注的是算法在处理数据时所需的时间和空间资源。在“算法复杂度作业2”中,我们可能涉及到多个编程语言和工具,如Shell、Perl、sed、awk以及Java,它们在解决...
### 探索 AI 画布背后的奥秘:AI 绘画软件算法复杂度解析 AI绘画,作为一种新兴的艺术创作方式,正逐步改变着我们对视觉艺术的理解与体验。这一技术的发展,离不开深度学习领域的进步,尤其是生成对抗网络(GANs)...
本文将深入探讨C++实现矩阵连乘的源代码、题目描述、以及算法复杂度的解析。 首先,我们要理解矩阵连乘的基本概念。在数学中,矩阵连乘是指对两个或多个矩阵进行乘法操作。对于给定的矩阵A和B,它们可以相乘的前提...
用matlab实现dft和fft算法复杂度比较
算法复杂度速查表 本文旨在为程序员提供一个算法复杂度速查表,涵盖计算机科学中常见算法的时间和空间复杂度。该速查表可以帮助程序员在面试和编程中快速查找算法的复杂度,从而节省时间和提高效率。 数据结构操作...
排序算法复杂度总结
《最大公约数的三种算法复杂度分析》 在计算机科学中,算法的效率是衡量其性能的重要指标,特别是在处理大量数据时。本文将详细探讨求两个自然数最大公约数(Greatest Common Divisor, GCD)的三种常见算法:连续...
### 由数据范围反推算法复杂度及其应用 在计算机科学与编程竞赛中,了解算法的时间复杂度对于选择合适的算法解决特定问题至关重要。通过题目给出的数据规模(即输入数据的大小),我们可以反向推导出适合该问题的...
最大公约数的三种算法复杂度分析时间计算 本实验报告的主要目的是设计和实现三种求最大公约数的算法,分析每种算法的时间复杂度,并比较它们的优缺点。 首先,我们设计了三种求最大公约数的算法:连续整数检测法、...
### 算法复杂度详解:时间复杂度与空间复杂度 #### 一、时间复杂度 **1. 时间频度** 在讨论算法效率时,我们通常关注算法执行所耗费的时间。理论上直接计算出算法的确切执行时间是不可行的,这需要具体的硬件...