PHPRPC 是一个轻型的、安全的、跨网际的、跨语言的、跨平台的、跨环境的、跨域的、支持复杂对象传输的、支持引用参数传递的、支持内容输出重定向的、支持分级错误处理的、支持会话的、面向服务的高性能远程过程调用协议。
PHPRPC for Java需要分别实现客户端和服务器端,现在给个具体的例子
比方服务器端为http://localhost:8080/server/,服务器端为http://localhost:8080/client/
我们需要建两个工程,分别为server和client。然后分别实现客户端和服务器端。
1.服务器端实现:
1)创建一个实现类:
public class MyHello {
public String say(String name) {
System.out.println("hello world!!");
return "Hello "+name;
}
}
2)发布服务:
新建一个jsp,取名字为hello.jsp,这样它的url为:http://localhost:8080/server/hello.jsp
hello.jsp内容为:
<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@page import="org.phprpc.PHPRPC_Server"%>
<%@page import="test.MyHello"%>
<%
MyHello hello=new MyHello();
PHPRPC_Server server=new PHPRPC_Server();
server.add(hello);
server.start(request,response);
%>
这样就发布好了。
2.客户端实现:
1)定义接口,和服务器实现类对应,取名Hello
public interface Hello {
public String say(String name);
}
2)上步完成后,我们就可以远程调用了,创建一个类,名称取为Test.java
public class Test{
public static void main(String[] args) {
PHPRPC_Client client=new PHPRPC_Client ("http://localhost:8080/server/hello.jsp");
Hello hello=(Hello)client.useService(Hello.class);
System.out.println(hello.say(" Java_KAbanban"));
}
当运行Test.java时便能达到想要的结果,输出:Hello Java_KAbanban
是不是很有用啊!!
大家要是有兴趣的话,可以讨论讨论!!
分享到:
相关推荐
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
样本图:blog.csdn.net/2403_88102872/article/details/144566118 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):686 标注数量(json文件个数):686 标注类别数:3 标注类别名称:["unripe","ripe","rotten"] 每个类别标注的框数: unripe count = 2452 ripe count = 1268 rotten count = 710 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
这个项目是一个全面的密码学学习工具,适合作为Rust编程和密码学入门项目。希望这个项目能帮助你提升Rust编程技能,并深入理解密码学原理!
LabSpec6 软件功能参考文献
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2540/CC2541上运行,如果是其他型号芯片,请自行调整。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
【DELM回归预测】基于matlab蜂虎狩猎算法改进深度学习极限学习机BEH-DELM数据回归预测【Matlab仿真 3847期】
Acronis Backup:Acronis备份软件的自动化与脚本编写.docx
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
阿德范德萨发范德萨范德萨范德萨范德萨范德萨发
【风电功率预测】基于matlab蛇群算法优化长短时记忆网络SO-LSTM风电数据预测(含前后对比)【Matlab仿真 3913期】
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
基于K最近邻(KNN)的随机森林分类器 它结合了ID3决策树算法和KNN的思想,用于分类任务 ID3决策树算法与K近邻(KNN)结合的随机森林分类器 ID3决策树分类器
深圳混泥土搅拌站商砼泵送与浇筑点检查细则
CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
Acronis Backup:Acronis备份数据的加密与安全.docx
本系统前端主要功能包括新闻、公告的查看,在线留言等。后台主要功能包括新闻管理、留言管理、用户管理等。 环境说明: 开发语言:Java,jsp JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea 部署容器:tomcat
深圳混泥土搅拌站生产管理制度