`

JVM内存段分配,Java垃圾回收调优,Heap设定

阅读更多
1. JVM内存段分配及启动参数:

J2EE服务器的内存组成:
 Java堆:我们的程序和对象都在这个堆进行管理
 C堆:当引用到一些Native的对象,如网络访问、OCI方式的数据库连接等都在C堆里进行管理

Java堆的描述:

 Young及Old区域用来存放由Java类而生成的内存对象;
 Perm区域用来存放Java类及其他虚拟机自己的静态数据

垃圾回收描述:

垃圾回收分多级,0级为全部(Full)的垃圾回收,会回收OLD段中的垃圾;1级或以上为部分垃圾回收,只会回收Young中的垃圾,内存溢出通常发生于OLD段或Perm段垃圾回收后,仍然无内存空间容纳新的Java对象的情况。

当一个URL被访问时,内存申请过程如下:
A. JVM会试图为相关Java对象在Eden中初始化一块内存区域
B. 当Eden空间足够时,内存申请结束。否则到下一步
C. JVM试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收);释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区/OLD区
D. Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区
E. 当OLD区空间不够时,JVM会在OLD区进行完全的垃圾收集(0级)
F. 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory错误”

Java堆相关参数:

ms/mx:定义YOUNG+OLD段的总尺寸,ms为JVM启动时YOUNG+OLD的内存大小;mx为最大可占用的YOUNG+OLD内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

NewSize/MaxNewSize:定义YOUNG段的尺寸,NewSize为JVM启动时YOUNG的内存大小;MaxNewSize为最大可占用的YOUNG内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

PermSize/MaxPermSize:定义Perm段的尺寸,PermSize为JVM启动时Perm的内存大小;MaxPermSize为最大可占用的Perm内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

SurvivorRatio:设置Survivor空间和Eden空间的比例

例:
MEM_ARGS="-Xms512m -Xmx512m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=128m -XX:MaxPermSize=128m -XX:SurvivorRatio=6"

在上面的例子中:
YOUNG+OLD: 512M
YOUNG: 256M
Perm: 128M
Eden: YOUNG*6/(6+1+1)=192M
Survivor: YOUNG/(6+1+1)=32M

Java堆的总尺寸=YOUNG+OLD+Perm=640M

2. JVM内存分析工具

可以使用HPjmeter来进行分析,需要将JDK的GC日志打开(-verbose:gc),可定期用HPjmeter对GC日志进行分析,Demo工具可提供Java Heap内存变化图,以及垃圾回收图,这样就很容易分析内存溢出时是哪个段产生问题

3. 内存溢出的可能性

1. OLD段溢出

这种内存溢出是最常见的情况之一,产生的原因可能是:
1) 设置的内存参数过小(ms/mx, NewSize/MaxNewSize)
2) 程序问题
? 单个程序持续进行消耗内存的处理,如循环几千次的字符串处理,对字符串处理应建议使用StringBuffer。此时不会报内存溢出错,却会使系统持续垃圾收集,无法处理其它请求,相关问题程序可通过Thread Dump获取(见系统问题诊断一章)

? 单个程序所申请内存过大,有的程序会申请几十乃至几百兆内存,此时JVM也会因无法申请到资源而出现内存溢出,对此首先要找到相关功能,然后交予程序员修改,要找到相关程序,必须在Apache日志中寻找。

? 当Java对象使用完毕后,其所引用的对象却没有销毁,使得JVM认为他还是活跃的对象而不进行回收,这样累计占用了大量内存而无法释放。由于目前市面上还没有对系统影响小的内存分析工具,故此时只能和程序员一起定位。

2. Perm段溢出

通常由于Perm段装载了大量的Servlet类而导致溢出,目前的解决办法:
1) 将PermSize扩大,一般256M能够满足要求
2) 若别无选择,则只能将servlet的路径加到CLASSPATH中,但一般不建议这么处理

3. C Heap溢出

系统对C Heap没有限制,故C Heap发生问题时,Java进程所占内存会持续增长,直到占用所有可用系统内存。

Java垃圾回收调优

在Java中,通常通讯类型的服务器对GC(Garbage Collection)比较敏感。通常通讯服务器每秒需要处理大量进出的数据包,需要解析,分解成不同的业务逻辑对象并做相关的业务处理,这样会导致大量 的临时对象被创建和回收。同时服务器如果需要同时保存用户状态的话,又会产生很多永久的对象,比如用户session。业务越复杂的应用往往用户 session包含的引用对象就越多。这样在极端情况下会发生两件事情,long gc pause time 或 out of memory。

一,要解决long pause time首先要了解JVM中heap的结构

java gc heap

java gc heap

  • Java Heap为什么要分成几个不同的代(generation)? 由于80%-98%的对象的生存周期很短,大部分新对象存放在young generation可以很高效的回收,避免遍历所有对象。
  • young与old中内存分配的算法完全不同。young generation中由于存活的很少,要mark, sweep 然后再 compact 剩余的对象比较耗时,干脆把 live object copy 到另外一个空间更高效。old generation完全相反,里面的 live object 变化较少。因此采用 mark-sweep-compact更合适。

二,Java中四种垃圾回收算法

Java中有四种不同的回收算法,对应的启动参数为
–XX:+UseSerialGC
–XX:+UseParallelGC
–XX:+UseParallelOldGC
–XX:+UseConcMarkSweepGC

1. Serial Collector
大部分平台或者强制 java -client 默认会使用这种。
young generation算法 = serial
old generation算法 = serial (mark-sweep-compact)
这种方法的缺点很明显,stop-the-world, 速度慢。服务器应用不推荐使用。

2. Parallel Collector
在linux x64上默认是这种,其他平台要加 java -server 参数才会默认选用这种。
young = parallel,多个thread同时copy
old = mark-sweep-compact = 1
优点:新生代回收更快。因为系统大部分时间做的gc都是新生代的,这样提高了throughput(cpu用于非gc时间)
缺点:当运行在8G/16G server上old generation live object太多时候pause time过长

3. Parallel Compact Collector (ParallelOld)
young = parallel = 2
old = parallel,分成多个独立的单元,如果单元中live object少则回收,多则跳过
优点:old old generation上性能较 parallel 方式有提高
缺点:大部分server系统old generation内存占用会达到60%-80%, 没有那么多理想的单元live object很少方便迅速回收,同时compact方面开销比起parallel并没明显减少。

4. Concurent Mark-Sweep(CMS) Collector
young generation = parallel collector = 2
old = cms
同时不做 compact 操作。
优点:pause time会降低, pause敏感但CPU有空闲的场景需要建议使用策略4.
缺点:cpu占用过多,cpu密集型服务器不适合。另外碎片太多,每个object的存储都要通过链表连续跳n个地方,空间浪费问题也会增大。

几条经验:
1. java -server
2. 设置Xms=Xmx=3/4物理内存
3. 如果是CPU密集型服务器,使用–XX:+UseParallelOldGC, 否则–XX:+UseConcMarkSweepGC
4. 新生代,Parallel/ParallelOld可设大于Xmx1/4,CMS可设小,小于Xmx1/4
5. 优化程序,特别是每个用户的session中的集合类等。我们的一个模块中session中曾经为每个用户使用了一个ConcurrentHashMap, 里面通常只有几条记录,后来改成数组之后,每台机大概节约了1~2G内存。

不过总的说来,Java的GC算法感觉是业界最成熟的,目前很多其他语言或者框架也都支持GC了,但大多数都是只达到Java Serial gc这种层面,甚至分generation都未考虑。JDK7里面针对CMS又进行了一种改进,会采用一种G1(Garbage-First Garbage Collection)的算法。实际上Garbage-First paper (PDF) 2004年已经出来了,相信到JDK7已经可以用于严格生产环境,有时间也会进一步介绍一下G1。
另外在今年的Sun Tech Days上Joey Shen 讲的Improving Java Performance (PDF)也是一个很好的Java GC调优的入门教程。

Heap设定与垃圾回收

Java Heap分为3个区,Young,Old和Permanent。Young保存刚实例化的对象。当该区被填满时,GC会将对象移到Old区。Permanent区则负责保存反射对象,本文不讨论该区。
JVM的Heap分配可以使用-X参数设定,
-Xms
初始Heap大小
-Xmx
java heap最大值
-Xmn
young generation的heap大小
JVM有2个GC线程。第一个线程负责回收Heap的Young区。第二个线程在Heap不足时,遍历Heap,将Young 区升级为Older区。Older区的大小等于-Xmx减去-Xmn,不能将-Xms的值设的过大,因为第二个线程被迫运行会降低JVM的性能。
为什么一些程序频繁发生GC?有如下原因:
l         程序内调用了System.gc()或Runtime.gc()。
l         一些中间件软件调用自己的GC方法,此时需要设置参数禁止这些GC。
l         Java的Heap太小,一般默认的Heap值都很小。
l         频繁实例化对象,Release对象。此时尽量保存并重用对象,例如使用StringBuffer()和String()。
如果你发现每次GC后,Heap的剩余空间会是总空间的50%,这表示你的Heap处于健康状态。许多Server端的Java程序每次GC后最好能有65%的剩余空间。
经验之谈:
1 Server JVM 最好将 -Xms -Xmx 设为相同值。为了优化 GC ,最好让 -Xmn 值约等于 -Xmx 1/3[2]
2 .一个 GUI 程序最好是每 10 20 秒间运行一次 GC ,每次在半秒之内完成 [2]
注意:
1.增加Heap的大小虽然会降低GC的频率,但也增加了每次GC的时间。并且GC运行时,所有的用户线程将暂停,也就是GC期间,Java应用程序不做任何工作。
2.Heap大小并不决定进程的内存使用量。进程的内存使用量要大于-Xmx定义的值,因为Java为其他任务分配内存,例如每个线程的Stack等。
2.Stack的设定
每个线程都有他自己的Stack。
-Xss
每个线程的 Stack 大小
Stack的大小限制着线程的数量。如果Stack过大就好导致内存溢漏。-Xss参数决定Stack大小,例如-Xss1024K。如果Stack太小,也会导致Stack溢漏。
3.硬件环境
硬件环境也影响GC的效率,例如机器的种类,内存,swap空间,和CPU的数量。
如果你的程序需要频繁创建很多transient对象,会导致JVM频繁GC。这种情况你可以增加机器的内存,来减少Swap空间的使用[2]。
4.4种GC
第一种为单线程GC,也是默认的GC。,该GC适用于单CPU机器。
第二种为Throughput GC,是多线程的GC,适用于多CPU,使用大量线程的程序。第二种GC与第一种GC相似,不同在于GC在收集Young区是多线程的,但在Old区和第一种一样,仍然采用单线程。-XX:+UseParallelGC参数启动该GC。
第三种为Concurrent Low Pause GC,类似于第一种,适用于多CPU,并要求缩短因GC造成程序停滞的时间。这种GC可以在Old区的回收同时,运行应用程序。-XX:+UseConcMarkSweepGC参数启动该GC。
第四种为Incremental Low Pause GC,适用于要求缩短因GC造成程序停滞的时间。这种GC可以在Young区回收的同时,回收一部分Old区对象。-Xincgc参数启动该GC。
4种GC的具体描述参见[3]。
分享到:
评论

相关推荐

    JVM内存管理及调优

    JVM内存管理是优化Java应用性能的关键环节,涉及到内存分配、垃圾回收以及内存溢出等问题。毕玄,一位在淘宝有着丰富经验的专家,通过他的演讲PPT,我们能深入理解JVM内存的实现、使用和调优。 ### 一、JVM内存实现...

    JVM性能调优-JVM内存整理及GC回收.pdf_java_jvm_

    《JVM性能调优——JVM内存整理及GC回收》是针对Java开发人员的重要主题,尤其是在大型企业级应用中,确保JVM(Java虚拟机)的高效运行是至关重要的。本资料深入探讨了如何通过调整JVM内存设置和优化垃圾回收机制来...

    JVM内存设置与调优指南

    - **GC频率**:过高可能意味着内存分配不合理或存在内存泄漏。 - **暂停时间(Pause Time)**:长时间的GC暂停会影响用户体验,应尽可能降低。 - **吞吐量(Throughput)**:应用运行时间占总时间的比例,调优的目标...

    jvm调优实战经验

    调整JVM参数可以控制内存分配、垃圾回收策略、并行度等,例如 `-Xms` 和 `-Xmx` 设定堆内存大小,`-XX:NewRatio` 控制年轻代和老年代的比例,`-XX:+UseConcMarkSweepGC` 开启CMS垃圾回收器等。通过监控工具(如...

    从常用的垃圾回收到JVM相关调优.pdf

    JVM垃圾回收调优是一个复杂的过程,需要根据应用的特性和运行环境来调整不同的参数。常见的调优参数包括设置年轻代和老年代的内存大小、调整GC算法、设置GC触发的阈值等。对于高并发、低延迟的应用,可能需要关闭或...

    JVM参数调优及Java测试代码

    3. **垃圾收集器和内存分配策略**: - `-XX:+UseConcMarkSweepGC` 和 `-XX:+UseParNewGC`:启用CMS(并发标记扫描)和ParNew垃圾收集器组合,适用于低延迟需求。 - `-XX:+UseG1GC`:使用G1(Garbage First)垃圾...

    jvm调优的实际应用

    JVM调优的目标主要是优化堆内存分配、垃圾回收策略以及线程管理等。常见的问题包括内存泄漏、垃圾回收效率低下、Full GC频繁等。针对这些问题,我们可以调整JVM的启动参数,如-Xms和-Xmx设置初始堆和最大堆大小,-XX...

    java虚拟机调优--某培训班的课件与源码

    理解这些区域的作用和它们之间的关系对于调整对象生命周期和内存分配策略至关重要。 2. **垃圾收集器**:JVM内置了多种垃圾收集器,如Serial、Parallel、Concurrent Mark Sweep (CMS) 和G1。不同的垃圾收集器有不同...

    weblogic内存调优

    WebLogic服务器内存调优是一个关键的过程,以...合理的内存分配可以避免频繁的垃圾收集,提高系统的响应速度,并确保服务的稳定性。在实践过程中,应监控内存使用情况,根据实际情况进行微调,以达到最佳的性能效果。

    JVM实战参数调优

    2. **收集基线数据**:通过JVisualVM、JConsole等工具监控应用的运行状态,了解当前的内存分配和垃圾回收情况。 3. **分析瓶颈**:通过GC日志和内存分析工具定位问题,如频繁Full GC、内存泄漏等。 4. **调整参数**...

    记录java.lang.OutOfMemoryErrorJava heap space的情况.docx

    JVM的内存调优还包括合理设定堆内存大小,避免频繁的垃圾回收,以及优化对象的创建和释放。 四、其他内存区域: 1. 每个线程都有自己的栈空间(Stack),其大小可以通过`-Xss`参数设置。栈的大小直接影响到可以同时...

    jvm调优示例

    JVM调优在此场景下可能需要关注对象创建频率、内存分配策略以及是否产生大量短生命周期的对象,这些都可能影响到GC行为。 总的来说,JVM调优是一个复杂而细致的过程,需要结合具体应用的性能指标和业务需求,通过...

    JVM、GC详解及调优

    不同的垃圾收集器有不同的内存分配策略。 4. **垃圾收集**:JVM提供了多种GC算法,如Serial、ParNew、Parallel Scavenge、CMS、G1和ZGC等,它们各有优缺点,适用于不同场景。 **GC详解** 1. **GC目标**:GC的主要...

    jvm调优实用工具.rar

    合理的内存分配可以避免频繁的垃圾回收,提高应用响应速度。 2. **垃圾收集器选择**:不同的垃圾收集器有不同的性能特性,例如Serial、Parallel、CMS、G1、ZGC等。根据应用的特性和需求,选择合适的垃圾收集器至关...

    系统和JVM调优(面试突击)

    系统和JVM调优是Java开发人员在面试中经常遇到的话题,这关乎程序性能优化、内存管理和稳定性。本文将深入探讨这两个关键领域的核心概念,并提供一些实战策略。 首先,我们来了解一下系统调优。系统调优主要包括...

    JVM内存结构笔记.rar

    1. **堆(Heap)**:这是Java对象的主要存储区域,所有的类实例和数组都会被分配到堆中。堆内存分为新生代(Young Generation)、老年代(Old Generation)和持久代(Permanent Generation)。新生代又细分为Eden区...

    带你全面理解JVM,掌握常规JVM调优-JVM.zip

    3. 内存分配策略:调整新生代、老年代的大小,减少Full GC的发生。 4. 类加载优化:合理设置-XX:MaxPermSize或-XX:MetaspaceSize,避免方法区溢出。 5. JIT编译优化:开启-XX:+UseConcMarkSweepGC或-XX:+UseG1GC等...

    jvm调优

    垃圾收集器与内存分配策略** 垃圾收集器是JVM内存管理的核心部分,它的主要任务是自动回收不再使用的对象所占用的内存空间。常见的垃圾收集器有Serial、ParNew、Parallel Scavenge、CMS(Concurrent Mark Sweep)、...

Global site tag (gtag.js) - Google Analytics