《逻辑与演绎科学方法论导论》
关于和数学基础的危机相联系的问题,塔尔斯基在他的书中几乎没有谈到;在书中没有说明一系列数学基础原有的重要结果,例如,与形式化“语言”中“真理性”概念相关的结果或与演绎理论的“无矛盾性”和“完全性”的各种定义相关的结果。他觉得它们对于通俗的叙述过于困难,而他屡次强调,他的书只是个引论。作为引认,这本实在令人满意。书的开端已经很好;一开始,作者就阐明数学中的值和数学中使用的变数方法,而且立即讨论作为数学学科的特点的两种类型的公式:1.命题函项,和2.指示函项。也应当指出这种情形,就是作者成功地避免了在书中有过多的形式计算,而把相应的材料放到练习中去。当然,最后这一点是以读者能够做出所有附在每一章后面的练习,包括那些对于演算工具的构造原则上很重要的问题为先决条件的。这些练习中的多数是适当地选择和表述出来的,它们是这样的简单,的确使得读者能够独立地做出来。
本书的目的就是要向那些对现代数学有兴趣,而不曾实际参与它的工作的读者们,至少在数学发的第三个方面,即其在深度方面的成长提供一个最一般的观念。我的目的是要使读者熟悉一种名为数理逻辑学科的最重要概念,这门学科是为了把数学建立在更坚固、更深刻的基础上创造出来的;这一个学科,虽然它的存在只有短短的一个世纪,却已经达到了高度的完全性(kemin:何为完全性?完善?完美?)的水平,而且在我们的知识的总和中它中它今天所起的作用远远超越于其原定的范围。我的目的是要表明,逻辑的一些概念渗透到数学的整体中,它把所有的专门数学概念了解为特殊事例,并把逻辑规律恒应用于--自觉不自觉的--数学推理之中。最后,我试图提出构造数学理论的一些最重的原则--这些原则也构成另外一种学科、数学方法论的主题--并指明臬在实际上着手应用这些原则。
科学理论是“定理集合”每一种科学理论都是许多语句组成的系统。这些语句都被断定为真的,可叫做定律或断定了的命题。在数学中,这些语句都按照一些原则(在第六章中将详细讨论这些原则)一个接一个地排列成确定的序列。在数学中,这些语句的正确性都要建立起来。建立语句的正确性,就叫做证明。被证明过的语句,就是我们所谓的定理。
kemin:科学理论可以理解为真理集!只是每一种学科有其特定的“真理”子集罢了。一条真理当然是真命题了,通俗的说是真话,陈述句。
常项与变项在数学的定理与证明中出现的语词和符号,可以分为常项与变项。常项有确定的意义且在运用过程中意义不变。变项则相反。
kemin:就是原始逻辑元素——概念的变形,确定的概念与不确定的概念
语句函项与公式“x是一个正整数”是一个含有变项的表达式,我们称其为语句函项或函项或条件。不叫语句,因为在为变项代入常项前该表达式没有意义。完全由数学符号(而不是由日常语言的语词)所构成的语句函项与语句叫公式。如:“x+y=5”。
kemin:函项也就是不那么原始的逻辑元素(思维形态)——命题,只是命题中某个概念不确定。
指示函项(摹状函项)是“代数式”除了语句函项,还有别的包含变项的表达式值得我们注意,就是指示函项或摹状函项。一个指示函项或摹状函项是这样的表达式,如果将它所包含的变项换为常项,那么,它就变成一个指示词或摹状词,如表达式:
2x+1
便是,因为如果用一个任意的数值常项(比如2)去代换变项,我们便得到一个指词(如5)。在算术中就是所谓的代数式了。这些代数式是由常项、数值常项与四种基本算术的符号构成,如“2(x+y-z)”;但是用等号将两个代数式联起来后成了公式了,就是语句函项。
kemin:指示函项就是“复合概念”
全称语句与普遍性质除了用常项支代换变以外,还有一个方法可以使我们由一个语句函项得到一个语句(Kemin:我的目的就是为了到一个语句!)。让我们来研究下面的公式:
x+y=y+x
这是一个包含两个变项的语句函项,任何两个任意数都可以满足这个方程式。我们用下面这句简单的话表示上面所说的情形:
对于任何数x与y,x+y=y+x。
这已经不是一个语句函项,而是一个语句了,而且还是一个真语句了;这是算术中最基本的定律之一,即加法交换律。数学中的那些最重要的定理都同样是这样表示的,即一切所谓全称语句,或所谓具有普遍性质的语句,这些语句断定某个范畴中任意事物(例如,在算术这个范畴中,任意的数)都具有一种如此如此的性质。
kemin:什么是定律定理?就是固定的规律原理!表现形式是一条命题语句。而一条命题语句本身是对某事物的某性质的陈述。某条特定的真命题当然有价值,但是能去掉具体事物,对一类事物均为真的命题更有价值。那句话,越普适的东西越有价值,数学和逻辑本身就是一个例子。
存在语句与存在性质看下面的语句函项:
x>y+1
并不是任何两个数都能满足这个公式。如“3>4+1”。这是一假语句。因此,如果有人说:
对于任何数x与y,x>y+1
那么,虽然他说了一个假语句,然而却是一个有意义的语句。但是,另一方面,也有许多对的数满足上面这个语句函项。如“4>2+1”。
某些两个数能满足这个公式,可以简单的地表示如下:
有数x与y,使得x>y+1。
这表达式是真语句,它就是存在语句或具有存在性的语句的例子。这种语句表示具有某某种性质的事物(如数)的存在。
分享到:
相关推荐
"计算机科学与技术导论学习笔记" 计算机科学与技术导论是计算机科学领域的基础课程,对计算机科学与技术的概述和介绍。以下是根据给定的文件信息生成的相关知识点: 计算机科学技术概述 计算机科学技术概述是...
【科学方法论导论】是学术领域中对科学研究方法的理论探讨,旨在理解和改进科学研究的过程。方法论在各个科学学科中都有其重要地位,尤其在会计学等专业领域,掌握科学方法论能提升研究质量和效率。 1. **方法的...
在科学研究领域,科学方法论是基础学科之一,它为我们提供了一套系统的认识世界和解决问题的工具。...因此,对于从事科学研究和学习科学方法的人来说,深入学习和掌握科学方法论是提升自身科学素养和研究能力的关键。
科学研究的艺术科学方法论导论PPT学习教案.pptx
博弈论导论,史蒂文·泰迪里斯:学习笔记,典题详解An Introduction to Game Theory 博弈论导论,史蒂文·泰迪里斯:学习笔记,典题详解 An Introduction to Game Theory 博弈论导论,史蒂文 ·泰迪里斯:学习笔记...
通过对马克思主义与社会科学方法论的学习,我们可以更好地理解和分析社会现象。马克思主义为我们提供了一套科学的方法论体系,帮助我们从多个角度深入研究社会问题。在现代社会科学研究中,这种方法论依然具有重要...
算法导论学习笔记 本资源是对《算法导论》的学习笔记,涵盖了算法的基础知识、算法分析、函数的增长、递归式等方面的内容。 一、算法基础知识 算法是指将输入转换为输出的一系列计算步骤,目的是为了有效利用...
《逻辑学导论》是当今逻辑教科书的标准范本,它能够使学生理解并应用古典三段论逻辑和更为强有力的现代符号逻辑技术。书中所选用的,来自许多不同领域文献的新颖实例,展示了许多严肃的学者和思想家在解决实际问题的...
计算机科学与技术导论论文.pdf
"科学技术方法论导论" 本篇导论旨在为读者提供科学技术方法论的基本概念和方法,帮助读者理解科学研究的基本程序、方法的相互关系和重要意义。本篇将从科学研究的基本概念、科学研究的一般程序、科学研究的方法和...
计算机科学导论部分笔记
智能科学与技术是21世纪发展最为迅速的领域之一,其涵盖了人工智能、机器学习、神经网络、自然语言处理等多个子领域。"智能科学与技术导论"是一门基础课程,旨在为学生提供全面的智能科技知识框架,帮助他们理解这个...
《网络科学导论》是由汪小帆教授主讲的一门课程,主要涵盖了网络科学的基本理论、方法和应用。这门课程的最新版讲义在2013年进行了更新,旨在帮助学生和研究者深入了解网络科学这一跨学科领域的前沿知识。 网络科学...
《网络科学导论》是汪小帆教授主讲的一门深入探讨复杂网络特性的课程,其课件包含了丰富的网络科学理论与实践知识。这门课程不仅涵盖了网络科学的基础概念,还涉及了网络科学在实际应用中的诸多方面。下面将详细阐述...
这份"算法导论授课教案学习笔记"是针对该书的深入学习资源,包括了教学教案、课后作业及解答,对于正在学习算法的学生来说,无疑是一份极其宝贵的参考资料。 教程部分可能涵盖以下知识点: 1. **算法基础**:介绍...
大数据导论学习记录笔记 大数据导论学习记录笔记中涵盖了大数据的基本概念、技术属性、云计算、物联网、人工智能等相关知识点。 大数据的基本概念 * 数据类型:文本、图片、音频、视频 * 数据结构化程度:结构化...
7.4.2 IPS与IMS 29 29 7.4.3 云安全 30 第8章 网络安全协议 31 8.2 IPSec 31 8.2.1 IPSec协议族的体系结构 31 8.2.2 IPSec协议的工作方式 31 8.2.3 Internet密钥交换协议 32 8.3 SSL 32 8.3.1 SSL协议的体系结构 32...
计算机科学与技术专业导论论文 本文是对计算机科学与技术专业的导论论文,旨在了解计算机科学与技术专业的重要性和发展前景。文章从个人学习经历开始,介绍了计算机科学与技术专业的概况,然后讨论了学习计算机科学...
本笔记深入探讨了监督学习和非监督学习这两种主要的学习方式,并从算法的角度出发,解析了一些关键的机器学习方法。 一、监督学习 监督学习是一种在已知输入与对应输出的情况下,通过训练模型来学习数据规律的方法...
从亚里士多德的三段论到现代的逻辑系统,逻辑学经历了许多变化和发展,这包括了中世纪的逻辑学家对亚里士多德逻辑的拓展,以及近现代逻辑符号化的发展。 《逻辑导论》第二版还包括了对非传统逻辑的讨论,也称为偏离...