【转:】http://www.cnblogs.com/chaunqi/archive/2011/01/21/tt81.html
Android应用的性能如何测试?JAVA层面可以用TraceView,可是用NDK开发出来的是so,TraceView跟踪不了怎么办?问了Google大神,答案是OProfile!
Oprofile 是Linux系统下一个低开销的系统全局的性能监视工具,利用处理器上所包含的专用的性能监视硬件(若没有性能监视硬件则使用一个基于计时器的代用品)来收集与性能相关的数据样品。它获得关于内核以及系统上的可执行文件的信息,例如内存是何时被引用的;L2缓存请求的数量;收到的硬件中断数量等。
Oprofile的特点如下:
l 无需重新编译源代码,如果不进行源代码及分析,连调试信息(-g option to gcc)也不是必须的。
l 只在内核中插入一个模块。
l 可以分析运行于系统之上的所有代码(禁用中断的代码除外)
l 系统的额外开销小,Oprofile会增加1%-8%的系统开销(取决于采样频率)
l 兼容所有2.2,2.4,2.6内核,可以运行在SMP系统之上
l 支持主流CPU架构,包括X86、arm、AVR32、mips、powerpc等
Oprofile要想跑在Andorid上,要满足下面的条件:
1.内核要支持
2.要将Oprofile移植到Arm平台上
下面是移植的全过程:
一、Oprofile移植
用到的交叉编译工具如下:
arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
用到的库如下:
popt-1.14.tar.gz
binutils-2.21.tar.gz
oprofile-0.9.6.tar.gz
$ tar xvfz arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 -C ~/
修改~/.bashrc,添加
export PATH=${PATH}:/home/louieli/arm-2010.09/bin
$ tar zxvf popt-1.14.tar.gz
$ cd popt-1.14
$ ac_cv_va_copy=yes ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/popt
$ make
$ make install
$ tar zxvf binutils-2.21.tar.gz
$ cd binutils-2.21/
$ ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/binutils --enable-shared
$ make LDFLAGS="-all-static"
可能会出现 cc1: warnings being treated as errors,找到出错文件的Makefile文件,将-Werror去掉
$ make install
$ tar zxvf oprofile-0.9.6.tar.gz
$ cd oprofile-0.9.6/
$ ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/oprofile/ --with-extra-libs=/home/louieli/work/popt/lib/ --with-extra-includes=/home/louieli/work/popt/include/ --with-binutils=/home/louieli/work/binutils
$ make LDFLAGS="-all-static -L/home/louieli/work/binutils/lib -Xlinker -R -Xlinker /home/louieli/work/binutils/lib -L/home/louieli/work/popt/lib/"
$ make install
用file 命令查看,我们需要的oprofile文件都已经变成可以在android上跑的静态链接文件了
install.sh: Bourne-Again shell script text executable
opannotate: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
oparchive: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opcontrol: a /system/bin/sh script text executable
opgprof: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
ophelp: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opimport: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opjitconv: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opreport: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
oprofiled: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
二、编译linux内核映像
a)准备交叉编译工具链
android代码树中有一个prebuilt项目,包含了我们编译内核所需的交叉编译工具。
b)设定环境变量
$ emacs ~/.bashrc
增加如下两行:
export PATH=$PATH:~/android/prebuilt/linux-x86/toolchain/arm-eabi-4.4.0/bin
export ARCH=arm
保存后,同步变化:
$ source ~/.bashrc
c)获得合适的内核源代码
$ cd ~/android
获得内核源代码仓库
$ git clone git://android.git.kernel.org/kernel/common.git kernel
$ cd kernel
$ git branch
显示
* android-2.6.27
说明你现在在android-2.6.27这个分支上,也是kernel/common.git的默认主分支。
显示所有head分支:
$ git branch -a
显示
* android-2.6.27
remotes/origin/HEAD -> origin/android-2.6.27
remotes/origin/android-2.6.25
remotes/origin/android-2.6.27
remotes/origin/android-2.6.29
remotes/origin/android-goldfish-2.6.27
remotes/origin/android-goldfish-2.6.29
我们选取最新的android-goldfish-2.6.29,其中goldfish是android的模拟器模拟的CPU。
$ git checkout -b android-goldfish-2.6.29 origin/android-goldfish-2.6.29
$ git branch
显示
android-2.6.27
* android-goldfish-2.6.29
我们已经工作在android-goldfish-2.6.29分支上了。
d)设定交叉编译参数
打开kernel目录下的Makefile文件,把CROSS_COMPILE指向刚才下载的prebuilt中的arm-eabi编译器
CROSS_COMPILE ?= arm-eabi-
把
LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,\
$(call ld-option, -Wl$(comma)–build-id,))
这一行注释掉,并且添加一个空的LDFLAGS_BUILD_ID定义,如下:
LDFLAGS_BUILD_ID =
e)编译内核映像
$ cd ~/android/kernel
$ make goldfish_defconfig
$ make menuconfig
修改内核配置如下
General setup --->
Profiling support (EXPERIMENTAL)
[ ] Activate markers
OProfile system profiling (EXPERIMENTAL)
这是把OProfile直接编进内核,也可以选择[M] OProfile system profiling (EXPERIMENTAL)会在arch/arm/oprofile文件夹下生成oprofile.ko,oprofile.ko需要用insmod载入。
$make
f)测试生成的内核映像
$ emulator -avd myavd -kernel ~/android/kernel/arch/arm/boot/zImage
三、Oprofile在android模拟器中的使用
1.先看一下opcontrol的参数
# opcontrol
opcontrol: usage:
-l/--list-events list event types and unit masks
-?/--help this message
-v/--version show version
--init loads the oprofile module and oprofilefs
--setup give setup arguments (may be omitted)
--status show configuration
--start-daemon start daemon without starting profiling
-s/--start start data collection
-d/--dump flush the collected profiling data
-t/--stop stop data collection
-h/--shutdown stop data collection and kill daemon
-V/--verbose[=all,sfile,arcs,samples,module,misc,ext]
be verbose in the daemon log
--reset clears out data from current session
--save=name save data from current session to session_name
--deinit unload the oprofile module and oprofilefs
-e/--event=eventspec
Choose an event. May be specified multiple times. Of the form
"default" or "name:count:unitmask:kernel:user", where :
name: event name, e.g. CPU_CLK_UNHALTED or RTC_INTERRUPTS
count: reset counter value e.g. 100000
unitmask: hardware unit mask e.g. 0x0f
kernel: whether to profile kernel: 0 or 1
user: whether to profile userspace: 0 or 1
-p/--separate=type,[types]
Separate profiles as follows :
none: no profile separation
library: separate shared library profiles per-application
kernel: same as library, plus kernel profiles
thread: per-thread/process profiles
cpu: per CPU profiles
all: all of the above
-c/--callgraph=#depth enable callgraph sample collection with a maximum depth.
Use 0 to disable callgraph profiling.
--session-dir=dir place sample database in dir instead of
default location (/var/lib/oprofile)
-i/--image=name[,names] list of binaries to profile (default is "all")
--vmlinux=file vmlinux kernel image
--no-vmlinux no kernel image (vmlinux) available
--kernel-range=start,end kernel range vma address in hexadecimal
--buffer-size=num kernel buffer size in sample units
--buffer-watershed kernel buffer watershed in sample units (2.6 only=
--cpu-buffer-size=num per-cpu buffer size in units (2.6 only)
--note-table-size kernel notes buffer size in notes units (2.4 only)
--xen Xen image (for Xen only)
--active-domains=<list> List of domains in profiling session (for Xen only)
(list contains domain ids separated by commas)
2.使用方法
将我们之前编译好的oprofile和busybox装入模拟器
执行oprofile目录中的install.sh 将oprofile装入模拟器
adb push busybox /data/busybox
$adb shell //进入模拟器shell
#chmod 777 /data/busybox
# /data/busybox --install /data/busybox
#export PATH=/data/busybox:$PATH:/data/oprofile
# mount -o remount rw /
# mount -o rw,remount -t yaffs2 /dev/mtdblock3 /system
# touch /etc/mtab
# echo nodev /dev/oprofile oprofilefs rw 0 0>/etc/mtab
# mkdir /dev/oprofile
# mount -t oprofilefs nodev /dev/oprofile //这一句很重要,没有这一句会出现下面的错误
# opcontrol --init
cat: can't open '/dev/oprofile/cpu_type': No such file or directory
Unable to open cpu_type file for reading
Make sure you have done opcontrol --init
cpu_type 'unset' is not valid
you should upgrade oprofile or force the use of timer mode
# opcontrol --init //初始化,只需运行一次
# opcontrol --setup --callgraph=2 --session-dir=/data/first --no-vmlinux
Using 2.6+ OProfile kernel interface.
Using log file /data/first/samples/oprofiled.log
Daemon started.
Profiler running.
# opcontrol --status
Daemon running: pid 637
Separate options: none
vmlinux file: none
Image filter: none
Call-graph depth: 2
# opcontrol --start //启动profiler
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.
# /data/test/test //运行我们的程序 ( 我的测试程序通过这条指令编译arm-none-linux-gnueabi-gcc -g -o test test.c -static -fno-omit-frame-pointer)
in c
in a
in b
in a
in c
in b
in a
in a
# opcontrol --dump //收集采样数据
# opcontrol --stop //停止profiler
Stopping profiling.
#opreport --session-dir=/data/first -l /data/test/test //查看报告
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt
samples % symbol name
11291 79.9589 a
1129 7.9952 b
853 6.0406 main
848 6.0052 c
现在我们就可以根据oprofile的输出对我们的程序进行优化了。
如果有哪位同学也想试一把的话,一定要用linux。这种移植环境很重要,我之前就在测试机(win7+cygwin)上浪费了很多时间。这里有打包好的工具,大家可以下载。其中kernel-qemu就是我们之前编译好的内核,替换掉Android SDK中的kernel-qemu就行了。祝各位好运!
分享到:
相关推荐
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
ACM动态规划模板-区间修改线段树问题模板
# 踏入C语言的奇妙编程世界 在编程的广阔宇宙中,C语言宛如一颗璀璨恒星,以其独特魅力与强大功能,始终占据着不可替代的地位。无论你是编程小白,还是有一定基础想进一步提升的开发者,C语言都值得深入探索。 C语言的高效性与可移植性令人瞩目。它能直接操控硬件,执行速度快,是系统软件、嵌入式开发的首选。同时,代码可在不同操作系统和硬件平台间轻松移植,极大节省开发成本。 学习C语言,能让你深入理解计算机底层原理,培养逻辑思维和问题解决能力。掌握C语言后,再学习其他编程语言也会事半功倍。 现在,让我们一起开启C语言学习之旅。这里有丰富教程、实用案例、详细代码解析,助你逐步掌握C语言核心知识和编程技巧。别再犹豫,加入我们,在C语言的海洋中尽情遨游,挖掘无限可能,为未来的编程之路打下坚实基础!
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
本项目为Python语言开发的PersonRelationKnowledgeGraph设计源码,总计包含49个文件,涵盖19个.pyc字节码文件、12个.py源代码文件、8个.txt文本文件、3个.xml配置文件、3个.png图片文件、2个.md标记文件、1个.iml项目配置文件、1个.cfg配置文件。该源码库旨在构建一个用于表示和查询人物关系的知识图谱系统。
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
rtsp实时预览接口URL:/evo-apigw/admin/API/MTS/Video/StartVideo HLS、FLV、RTMP实时预览接口方式 :接口URL/evo-apigw/admin/API/video/stream/realtime 参数名 必选 类型 说明 data true string Json串 +channelId true string 视频通道编码 +streamType true string 码流类型:1=主码流, 2=辅码流,3=辅码流2 +type true string 协议类型:hls,hlss,flv,flvs,ws_flv,wss_flv,rtmp hls:http协议,m3u8格式,端口7086; hlss:https协议,m3u8格式,端口是7096; flv:http协议,flv格式,端口7886; flvs:https协议,flv格式,端口是7896; ws_flv:ws协议,flv格式,端口是7886; wss_flv:wss协议,flv格式,端口是7896; rtmp:rtmp协议,端口是1975;
Simulink永磁风机飞轮储能系统二次调频技术研究:频率特性分析与参数优化,Simulink永磁风机飞轮储能二次调频技术:系统频率特性详解及参数优化研究参考详实文献及两区域系统应用,simulink永磁风机飞轮储能二次调频,系统频率特性如下,可改变调频参数改善频率。 参考文献详细,两区域系统二次调频。 ,核心关键词: 1. Simulink 2. 永磁风机 3. 飞轮储能 4. 二次调频 5. 系统频率特性 6. 调频参数 7. 改善频率 8. 参考文献 9. 两区域系统 以上关键词用分号(;)分隔,结果为:Simulink;永磁风机;飞轮储能;二次调频;系统频率特性;调频参数;改善频率;参考文献;两区域系统。,基于Simulink的永磁风机与飞轮储能系统二次调频研究:频率特性及调频参数优化
MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照展示,MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照图展示,MATLAB驱动防滑转模型ASR模型 ASR模型驱动防滑转模型 ?牵引力控制系统模型 选择PID控制算法以及对照控制算法,共两种控制算法,可进行选择。 选择冰路面以及雪路面,共两种路面条件,可进行选择。 控制目标为滑移率0.2,出图显示车速以及轮速对照,出图显示车辆轮胎滑移率。 模型简单,仅供参考。 ,MATLAB; ASR模型; 防滑转模型; 牵引力控制系统模型; PID控制算法; 对照控制算法; 冰路面; 雪路面; 控制目标; 滑移率; 车速; 轮速。,MATLAB驱动的ASR模型:PID与对照算法在冰雪路面的滑移率控制研究
芯片失效分析方法介绍 -深入解析芯片故障原因及预防措施.pptx
4131_127989170.html
内容概要:本文提供了一个全面的PostgreSQL自动化部署解决方案,涵盖智能环境适应、多平台支持、内存与性能优化以及安全性加强等重要方面。首先介绍了脚本的功能及其调用方法,随后详细阐述了操作系统和依赖软件包的准备过程、配置项的自动生成机制,还包括对实例的安全性和监控功能的强化措施。部署指南给出了具体的命令操作指导,便于新手理解和执行。最后强调了该工具对于不同硬件条件和服务需求的有效应对能力,特别是针对云计算环境下应用的支持特点。 适合人群:对PostgreSQL集群运维有一定基础并渴望提高效率和安全性的数据库管理员及工程师。 使用场景及目标:本脚本能够帮助企业在大规模部署时减少人工介入时间,确保系统的稳定性与高性能,适用于各类需要稳定可靠的数据库解决方案的企业或机构,特别是在大数据量和高并发事务处理场合。 其他说明:文中还提及了一些高级功能如自动备份、流复制等设置步骤,使得该方案不仅可以快速上线而且能满足后续维护和发展阶段的要求。同时提到的技术性能数据也为用户评估其能否满足业务需求提供了直观参考。
房地产开发合同[示范文本].doc
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
工程技术承包合同[示范文本].doc
蓝桥杯开发赛【作品源码】
在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!
CVPR2023复现技术:多数据集验证下的YOLOX、YOLOv5及YOLOV7检测涨点助力器,CVPR2023复现实验助力检测涨点,验证了YOLOX、YOLOv5及YOLOV7在多个数据集上的有效性,cvpr2023复现,助力检测涨点,YOLOX YOLOv5 YOLOV7均有效,再多个数据集验证有效 ,cvpr2023复现; 助力检测涨点; YOLOX有效; YOLOv5有效; YOLOV7有效; 多数据集验证有效,CVPR2023复现成功:多模型检测涨点验证有效