`
yanghuidang
  • 浏览: 976174 次
  • 性别: Icon_minigender_1
  • 来自: 北京
文章分类
社区版块
存档分类
最新评论

Unix/Linux 的 Load 初级解释

阅读更多

几乎每个接触类 Unix 操作系统的工程师都知道如何查看系统负载。但这东西的工作机理到底是怎样的,可能没有多少能说清楚。对比了一些相关信息,加上自己的理解,做一下笔记。

什么是 Load ? 什么是 Load Average ?

Load 就是对计算机干活多少的度量(WikiPedia: the system load is a measure of the amount of work that a computer system is doing)。也有简单的说是进程队列的长度. Load Average 就是一段时间 (1 分钟、5分钟、15分钟) 内平均 Load 。【最好的参考文章:UNIX® Load Average Part 1: How It Works

下面是一个 uptime 命令输出:

$ uptime
18:57:48 up 423 days, 3:55, 2 users, load average: 1.16, 1.12, 1.20

尽管各种信息来源的定义都不太确定。能确定的一件事情是,你不能精确获取当前时间的 Load . 最小的计算粒度是 5 秒钟(CALC_LOAD 每 5HZ 计算一次, 5HZ 为 5秒钟). 参见 Linux Kernel 这段代码:

 869        count -= ticks;
 870        if (unlikely(count  874                        CALC_LOAD(avenrun[1], EXP_5, active_tasks);
875 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
876 count += LOAD_FREQ; 877 } while (count < 0); 878 } 879}

如何判断系统是否已经 Over Load ?

对一般的系统来说,根据 CPU 数量去判断,如上面的例子, 如果平均负载始终在 1.2 以下,而你是 2 颗 CPU 的机器。那么基本不会出现 CPU 不够用的情况。也就是 Load 平均要小于 CPU 的数量。

这是 Solaris 性能与工具(Solaris Performance Tools ) 一书推荐的评估方法。【在这里要推荐一下这本书,尽管在 Load 这个地方没有达到我期望的那么细致。但全书揭示了非常多的性能信息。每个 DBA、架构师 的必须书。】

这么说实际上带来另外两个疑问:

1 如果是多核 CPU / 超线程的机器怎么判断? 对这样的机器,我的建议是看操作系统怎么识别的 CPU,根据系统识别出来的逻辑 CPU 数量来判断。如果要考虑性能系数,建议参考一下 Oracle 针对不同架构下多核 CPU 的收费标准。

2 如果应用是面向线程的怎么判断? 这实际上和 M:N 线程模型有关。你的系统是怎样的? 把这个问题考虑进去即可了。

多数情况下,Load 过高都未必和 CPU 有关。或许倒是有一个例外的,就是应用场景的问题。比如用单 CPU 的机器去做高并发 Web 服务器,麻烦就来了

Load 与容量规划(Capacity Planning)

任何一个相对成熟的站点都会利用 Cacti(基于RRDTool) 等工具进行容量规划工作。抓取的 Load 会传 1、5、15 分钟列值过去,这三个度量采用哪个呢? 15 分钟为首选【参见Gunther 的 PPT】。

Load 与系统预警

很多对可用性要求比较高的环境都建立了 邮件或SMS 报警机制。关于 Load 报警阈值的制定也有看到不太合理的时候。这里建议 Critical 值(如果用 Nagios 之类的工具你明白这是什么)上限为 物理 CPU 的个数(当然你可以设置比这个低)。但比这个值高的话,意义就不大了。比如,数据库服务器有 4 颗 CPU,那么 Load 高于 4 就应该报警出来,设置比 4 高可能意义不大,因为接到报警还有个人为响应时间...

误解 一:系统 Load 高一定是性能有问题。

真相:系统 Load 高也或许是因为在进行 CPU 密集型的计算(比如编译)

误解 二:系统 Load 高一定是 CPU 能力问题或数量不够。

真相:Load 高只是代表需要运行的队列累积过多了。但队列中的任务实际可能是耗 CPU的,也可能是耗 I/O 乃至其它因素的。

误解 三:系统长期 Load 高,首选增加 CPU。

真相:Load 只是表象,不是实质。增加 CPU 个别时候会临时看到系统 Load 下降,但治标不治本。

小小一个 Load 讲究其实不少。英文信息其实比较全的,尽量保证加入一点新信息到这篇文章里。入看到有写的不合理的地方或者有异议,请指正或告知。

分享到:
评论

相关推荐

    Unity面试题30题含答案——C#基础.

    此外,它还扩展了.NET的功能,增加了对其他平台的支持,比如Unix、Linux等。 - **关系**:从技术角度来看,Mono是.NET的一种开源实现,它遵循了.NET的规范,提供了类似的开发环境和工具链。但是,它更侧重于跨平台性...

    DB2维护手册.pdf

    7. **不要随便执行CHOWN(CHMOD)-R (UNIX/Linux)** - **重要性**: 错误的权限更改可能导致安全问题。 - **操作方法**: - 除非有明确的需求,否则避免随意更改文件权限。 - 确保所有文件权限的更改都是经过审查和...

    高级软件工程师求职个人简历.docx

    - **操作系统**:掌握Windows Server、Linux/Unix等操作系统的管理和配置。 - **中间件**:具备WebSphere等中间件的部署和运维经验。 - **数据库**:精通Oracle、Sybase等数据库的管理和开发。 - **框架与库**:...

    打造高效集成工具箱:基于Python与Tkinter的实战开发教程

    在日常的开发和使用中,我们经常需要借助各种小工具来提高工作效率,例如快速启动常用的应用程序、管理文件等。一个简单但功能强大的集成工具箱可以帮助用户快速访问、启动并管理程序。今天,我们将以Python为基础,结合Tkinter和Win32API,开发一个类似Windows快捷方式的工具箱应用,能够让你轻松集成各种常用程序并一键启动

    django自建博客app

    django自建博客app

    《基于YOLOv8的智慧校园实验室高压灭菌锅安全联锁系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    《基于YOLOv8的智慧校园实验室高压灭菌锅安全联锁系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计

    用于hifi测序数据的基因组组装程序

    用于hifi测序数据的基因组组装程序

    Microsoft Access 2010 数据库引擎可再发行程序包AccessDatabaseEngine-X64解压后的文件AceRedist

    Microsoft Access 2010 数据库引擎可再发行程序包AccessDatabaseEngine-X64解压后的文件AceRedist

    从大模型、智能体到复杂AI应用系统的构建-以产业大脑为例.pdf

    从大模型、智能体到复杂AI应用系统的构建——以产业大脑为例

    自然语言处理之TF-IDF算法与TextRank算法的缠绵_textrank,tf-idf和两者的组合-CSDN博客.html

    自然语言处理之TF-IDF算法与TextRank算法的缠绵_textrank,tf-idf和两者的组合-CSDN博客.html

    科学智能2023版《科学智能 (AI4S)全球发展观察与展望》:AI4S驱动的跨领域技术创新与应用

    内容概要:2023版《科学智能 (AI4S)全球发展观察与展望》阐述了AI for Science(AI4S)在全球范围内的最新进展及其对科学和工业的深远影响。文章首先回顾了AI4S在过去一年中的快速发展,特别是在药物研发、材料科学、地质学、污染治理等多个领域的应用实例。AI4S通过结合深度学习、机器学习和其他AI技术,加速了从基础研究到实际应用的转化过程。例如,在药物研发中,AI4S帮助科学家克服了“反摩尔定律”的挑战,提高了新药研发的成功率;在材料科学中,AI4S实现了复杂材料的高效模拟,如人造钻石、石墨烯、碳纳米管等;在地质学中,AI4S通过模拟地球内部结构和物理过程,为地震学研究提供了新视角。此外,文章还探讨了大语言模型(LLMs)与科学方法的结合,指出LLMs不仅能辅助科学研究,还能生成新的科学假设并进行逻辑推理。 适合人群:具备一定科研背景或对AI技术感兴趣的科研人员、工程师、政策制定者及高校师生。

    个人健康与健身追踪数据集,包含了日常步数统计、睡眠时长、活跃分钟数以及消耗的卡路里,适用于数据分析、机器学习

    这个数据集包含了日常步数统计、睡眠时长、活跃分钟数以及消耗的卡路里,是个人健康与健身追踪的一部分。 该数据集非常适合用于以下实践: 数据清洗:现实世界中的数据往往包含缺失值、异常值或不一致之处。例如,某些天的步数可能缺失,或者存在不切实际的数值(如10,000小时的睡眠或负数的卡路里消耗)。通过处理这些问题,可以学习如何清理和准备数据进行分析。 探索性分析(发现日常习惯中的模式):可以通过分析找出日常生活中的模式和趋势,比如一周中哪一天人们通常走得最多,或是睡眠时间与活跃程度之间的关系等。 构建可视化图表(步数趋势、睡眠与活动对比图):将数据转换成易于理解的图形形式,有助于更直观地看出数据的趋势和关联。例如,绘制步数随时间变化的趋势图,或是比较睡眠时间和活动量之间的关系图。 数据叙事(将个人风格的追踪转化为可操作的见解):通过讲述故事的方式,把从数据中得到的洞察变成具体的行动建议。例如,根据某人特定时间段内的活动水平和睡眠质量,提供改善健康状况的具体建议。

    框架结构天城商业办公楼5200平米(建筑图 结构图 计算书 开题报告 任务书 文献翻.zip

    框架结构天城商业办公楼5200平米(建筑图 结构图 计算书 开题报告 任务书 文献翻.zip

    柴油机连杆加工工艺及夹具设计.zip

    柴油机连杆加工工艺及夹具设计.zip

    BeautifulSoup中的select方法汇总

    读书网首页的HTML信息

    渐变色文字生成工具 v1.0一款让文字生成渐变颜色代码的软件文字渐变颜色代码生成器.rar

    文字渐变颜色代码生成器:让文字绽放多彩魅力,演示:在信息交流日益丰富的今天,个性化的文字展示成为吸引目光的关键。这款文字渐变颜色代码生成器,便是为满足这一需求而生的绿色软件,无需安装,便捷实用。 它的操作极为简便。用户只需在软件界面中输入想要转换的文字内容,接着从丰富的色彩选项里挑选心仪的起始颜色与结束颜色,随后轻轻按下 “转换按钮”,神奇的事情就此发生 —— 适用于论坛、网页、QQ 空间等多种平台,以及自定义格式的渐变颜色代码便会即刻生成。不仅如此,生成的代码还能自动复制到剪切板,极大地节省了用户手动复制的时间。当你在论坛回帖、更新网页内容或是装扮 QQ 空间时,只需轻松粘贴代码,原本单调的文字瞬间就能拥有绚丽的渐变色彩,瞬间脱颖而出,为你的表达增添独特魅力,让文字不再平凡,轻松成为视觉焦点。 一款可以轻松把一段文字生成渐变颜色代码的绿色软件,当你在软件中输入完要转换的文字后,只需要挑选自己喜欢的起始颜色、结束颜色后,按一下―转换按钮即可生成相应的论坛/网页/QQ空间以及自定义格式代码,并且代码可以自动复制到剪切板中,回帖时直接粘贴代码即可不错得文字代码生成器,让你得文字更加漂亮.

    【锂电池剩余寿命预测】Transformer锂电池剩余寿命预测(Matlab完整源码和数据)

    1.【锂电池剩余寿命预测】Transformer锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。

    《基于YOLOv8的船舶压载水违规排放监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

Global site tag (gtag.js) - Google Analytics