别人写的,找不到作者了,只是总结得很好,拿来记录一下。
主要介绍了以下几种背包问题:
第一类 01背包问题
第二类 完全背包问题
第三类 多重背包问题
第四类 混合三种背包问题
第五类 二维费用的背包问题
第六类 分组的背包问题
第一类:01背包问题
题目:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
基本思路:
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
//伪代码
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
//伪代码
procedure ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c[i],w[i]);
//////////////////////////////////////////////////////////////////////////////////////////////////////
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。
//////////////////////////////////////////////////////////////////////////////////////////////////////
第二类:完全背包问题
题目:
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
O(VN)的算法:
这个算法使用一维数组,先看伪代码:
for i=1..N
for v=0..V
f[v]=max{f[v],f[v-cost]+weight}
你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么第一类中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。
值得一提的是,上面的伪代码中两层for循环的次序可以颠倒。这个结论有可能会带来算法时间常数上的优化。
这个算法也可以以另外的思路得出。例如,将基本思路中求解f[i][v-c[i]]的状态转移方程显式地写出来,代入原方程中,会发现该方程可以等价地变形成这种形式:
f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}
将这个方程用一维数组实现,便得到了上面的伪代码。
最后抽象出处理一件完全背包类物品的过程伪代码:
procedure CompletePack(cost,weight)
for v=cost..V
f[v]=max{f[v],f[v-c[i]]+w[i]}
第三类:多重背包问题
题目:
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本算法:
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}
复杂度是O(V*Σn[i])。
转化为01背包问题:
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。
方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。
分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。
这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为<math>O(V*Σlog n[i])的01背包问题,是很大的改进。
下面给出O(log amount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量:
procedure MultiplePack(cost,weight,amount)
if cost*amount>=V
CompletePack(cost,weight)
return
integer k=1
while k<amount
ZeroOnePack(k*cost,k*weight)
amount=amount-k
k=k*2
ZeroOnePack(amount*cost,amount*weight)
希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。
O(VN)的算法:
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。
第四类:混合背包问题
问题:
如果将第一类、第二类、第三类混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?
01背包与完全背包的混合
考虑到在第一类和第二类中给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:
for i=1..N
if 第i件物品属于01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品属于完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};
再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。
当然,更清晰的写法是调用我们前面给出的三个相关过程。
for i=1..N
if 第i件物品属于01背包
ZeroOnePack(c[i],w[i])
else if 第i件物品属于完全背包
CompletePack(c[i],w[i])
else if 第i件物品属于多重背包
MultiplePack(c[i],w[i],n[i])
第五类:二维费用的背包问题
问题:
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。
算法:
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:
f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}
如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。当物品有如多重背包问题时拆分物品。这里就不再给出伪代码了,相信有了前面的基础,你能够自己实现出这个问题的程序。
///////////////////////////////////////////////////////////////////////////////
物品总个数的限制:
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案
///////////////////////////////////////////////////////////////////////////////
第六类:分组的背包问题
问题:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
算法:
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:
f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于组k}
使用一维数组的伪代码如下:
for 所有的组k
for v=V..0
for 所有的i属于组k
f[v]=max{f[v],f[v-c[i]]+w[i]}
注意这里的三层循环的顺序,甚至在本文的第一个beta版中我自己都写错了。“for v=V..0”这一层循环必须在“for 所有的i属于组k”之外。这样才能保证每一组内的物品最多只有一个会被添加到背包中。
还有一些背包问题的变化,如加入依赖的,还有泛化背包问题,比较麻烦,没有写。
分享到:
相关推荐
0-1背包问题 一种解法
第一讲 01背包问题 这是最基本的背包问题,每个物品最多只能放一次。 第二讲 完全背包问题 第二个基本的背包问题模型,每种物品可以放无限多次。 第三讲 多重背包问题 每种物品有一个固定的次数上限。 第四讲 ...
背包问题是一种典型的组合优化问题,广泛存在于资源分配、项目选择等领域。在本项目中,我们利用MATLAB强大的计算能力,结合遗传算法,对背包问题进行了有效的求解,以实现背包内的物品最大化价值。 一、背包问题...
0-1背包问题是一种经典的组合优化问题,在计算机科学和运筹学中有着广泛的应用。它描述的是这样的场景:你有一组物品,每件物品都有一个重量和价值,你需要选择一部分物品放入容量有限的背包中,使得背包中的物品总...
背包问题是一类经典的组合优化问题,其基本形式为:给定一系列物品,每种物品都有一定的价值(或利润)和重量,要求从中选择若干物品放入背包中,使得总重量不超过背包容量的情况下,背包内物品的总价值最大。...
**背包问题**是一种经典的组合优化问题,广泛应用于资源分配、项目选择、投资组合优化等领域。在该问题中,我们有一组物品,每种物品都有一个重量和一个价值,我们需要将这些物品放入一个容量有限的背包中,以使背包...
这里我们关注的是一个经典的数据结构问题——背包问题。背包问题是一类优化问题,常见于运筹学、计算机科学和算法设计中。在本案例中,我们将讨论如何用C语言和栈来解决这类问题。 首先,让我们了解背包问题的基本...
背包问题是计算机科学中的一种经典问题,属于组合优化问题。该问题的目标是从给定的物品集中选择一部分物品,以使得背包的价值最大化,而不超过背包的容量限制。 在给定的源代码中,提供了两种解决背包问题的算法:...
在IT领域,优化问题是一个广泛的研究方向,其中背包问题是经典的组合优化问题之一。"禁忌搜索背包问题"是指利用禁忌搜索算法来寻找背包问题的最优解。在这个问题中,我们有一个固定容量的背包,以及一系列物品,每件...
背包问题是一种经典的优化问题,广泛存在于计算机科学和运筹学领域,尤其在算法设计和组合优化中有着重要应用。该问题源于实际生活中的物品装箱问题,例如,如何在有限的背包容量内,选择价值最高或者重量最轻的物品...
在IT领域,背包问题是一种经典的优化问题,常用于解决资源有限条件下的决策优化。这个问题源自于实际生活中的各种场景,比如包裹打包、投资组合优化、任务分配等。它属于运筹学和组合优化的范畴,同时也是算法竞赛如...
【背包问题可视化】是一种在计算机科学中用于解决优化问题的经典算法,主要应用于资源分配和决策制定。这个项目是基于.NET框架实现的,并且利用ASP.NET技术进行可视化展示。通过使用`asp:table`控件,开发者创建了一...
《背包问题九讲》,dd_engi大神原作,从属于《动态规划的思考艺术》系列这系列文章的第一版于2007 年下半年使用EmacsMuse 制作,以HTML 格式发布 到网上,转载众多,有一定影响力。2011 年9 月,本系列文章由原作者...
背包问题是计算机科学与运筹学中非常经典的一类优化问题,属于组合优化的范畴。背包问题的核心思想在于,当面对有限的资源(背包的容量)和多种选择(物品的价值和重量),需要决策哪些物品放入背包,使得背包中的...
本资源为一系列关于背包问题的讲解,共九讲,涵盖了大部分背包问题的理论基础。通过这九讲,读者可以系统地学习背包问题的基本概念、解决方法和优化技巧。 第一讲:基本背包问题 背包问题的基本形式是:给定 n 件...
标题中的“背包问题的一种简单算法”指的是在计算机科学领域中,经典的动态规划问题——0-1背包问题的一个简化的解决方案。0-1背包问题通常涉及在一个容量有限的背包中选择物品,目标是使得放入背包的物品总价值最大...
0-1背包问题是一种经典的计算机科学中的组合优化问题,它源于实际生活中的资源分配问题,例如在有限的容量下选择最有价值的物品进行携带。在这个问题中,我们有一组物品,每种物品都有一个重量和一个价值,目标是...
背包问题通常可以概括为:给定一组物品,每件物品都有一定的重量和价值,我们需要选择部分或全部物品放入一个背包中,使得背包内的物品总价值最大,同时不超过背包的最大承重限制。这类问题的核心在于如何在有限的...
背包问题是一种组合优化的问题。在计算机科学和数学中,具体地讲,它涉及到将不同价值的物品放入容量有限的背包中,以使得背包中物品的总价值最大,但不能超过背包的承载限制。背包问题在算法设计和分析中有广泛的...
【背包问题】是一种经典的组合优化问题,广泛应用于资源分配、任务调度等领域。在这个问题中,我们有一个容量有限的背包和一系列物品,每件物品都有一个重量和价值。目标是在不超过背包容量的前提下,选择物品以最大...