`
java_mzd
  • 浏览: 585173 次
  • 性别: Icon_minigender_1
  • 来自: 长沙
社区版块
存档分类
最新评论
阅读更多

 

 

PS.又调了好几遍,还是无法将整篇文章作为一个博客发表。所以,还是将文件分成两部分吧。

第一部分主要介绍网络层的基本知识

第二部分介绍ICMP有关知识。

你所不知道的网络层

上文《TCP/IP传输层,你懂多少》 http://java-mzd.iteye.com/blog/1007577中,我们介绍了“传输层是如何为数据提供端对端的服务的”.

可是,数据包又是怎样从你的电脑出发,历经网络世界的艰辛,到达对方电脑的呢在网络的世界当中,你的数据包又会遇到些什么问题?它们又是怎么解决的你?要回答这个问题,我们就必须研究TCP/IP协议栈中的Internet层(和数据链路层了)。


同以往一样,给出我自己认为会遇到的15个问题,并且列出来,如果大家能熟练的回答,请您绕道。

  1. 网络层的作用?
  2. 网络层有哪些协议?
  3. IP数据包的格式?
  4. IP数据包传输的过程?
  5. 为什么需要ARP协议?
  6. ARP协议通信过程是怎么样的?(ARP协议如何控制网络?)
  7. 数据包的最大值?(分片的地方?分片重组的地方?分片的原则?)
  8. 数据包在局域网内怎么从一台主机传送到另外一台主机?
  9. 数据怎么实现跨网段传输?(路由如何实现跨网段传输?)
  10. 什么是默认网关?
  11. 代理ARP的作用?
  12. 数据跨网段传输时在路由器中的具体情形?(所谓的穿过路由是指什么?)
  13. 数据包路由的过程?
  14. 为什么需要ICMP协议?(ICMP协议差错控制与TCP差错控制对比)
  15. 什么是ICMP协议?
  16. ICMP协议有哪些数据包?(Ping程序的实现?trancerouter程序的实现?) 

一。网络层的作用: 

TCP/IP协议栈的Internet主要负责处理主机到主机的通信,决定数据包如何交付:是交给网关(路由器)还是交给本地端口。

 

二。网络层的协议及作用:

网际协议IP:用来路由

网际控制报文协议 ICMP:IP层提供一定的可靠性

地址解析协议ARP:

反向地址解析协议RARP

 

三。IP数据包格式: 

 

版本(4)

头长度(4)

服务类型(8)

总长度(16)

标识(16)

标志(3)

段位移(13)

生存期(8)

协议(8)

头校验和(16)

IP地址(32)

目的IP地址(32)

IP选项(0或者32

数据

  

四。数据包传输的过程

首先,传输层将封装好的数据交给Internet层,Internet层收到数据后,将数据封装成一个IP数据包。

注意协议之间的底层无关性:Internet层封装上层数据包时,不关心不管上层传给他的是UDP数据包还是TCP数据包,都将上层传来的数据封装为IP数据包。同样,传输层在封装用户信息流时也是同样的不关心上层数据的内容。

 

五。为什么需要ARP协议?

IP数据包要想继续向下发送,就必须转化为在物理设备上传输的数据帧。 

在物理设备上传输数据时,数据包首先是被网卡接收,如果网卡接收到的数据包的硬件地址与本机不符,则直接丢弃,如果相符,再交由上层协议处理的。在我们的网络通信中,源主机的应用程序知道目的程序的IP地址和端口号,却不知道目的主机的硬件地址,因此在通讯前必须获得目的主机的硬件地址。ARP协议就起到这个作用。

 

六。ARP协议通信过程?

每台机器上都维护着一个ARP缓存表,保存着IP地址MAC地址的映射

注意:缓存表中的记录有过期时间T,如果T时间内没有再次使用某条记录,则该记录失效,下次使用时,还要再次发ARP请求来获得目的主机的硬件地址。

作用:因为我们的机器需要和大量机器通信,如果没有过期机制的话,显然将会产生巨大的记录量,降低效率。

 

主机A要和主机B(192.168.0.1)通信,则先查询主机A中的ARP缓存表,看是否有该记录,如果有,则取出对应MAC地址。

如果缓存中没有该记录,主机A发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”,并将这个ARP请求广播到本地网段本地网段的任何一个主机都可能是接受者,所以用广播, 广播的目的MAC地址:FF:FF:FF:FF:FF:FF)主机B收到广播的ARP请求,发现其中的IP地址(192.168.0.1)与本机相符,发送一个ARP应答数据包给源主机,将自己的硬件地址填写在应答包中,主机A接收ARP应答,提取MAC地址,并且将IP和MAC映射存入ARP缓存。

对于其他主机,虽然这个ARP请求可能与它无关,但ARP协议软件也会把其中的源MAC地址与源IP地址的映射记录下来这样做能够有效的减少ARP请求在局域网的发送次数。 


ARP欺骗的原理: 


通过以上的知识,我们可以知道,主机A要和主机B通信,必须请求得到主机B的MAC地址,而MAC地址,又是通过ARP请求来得到的。又,根据ARP请求的广播机制,与非接收主机也会讲收到的ARP请求存入自己的ARP缓存。那么,我们可以自己发送一个ARP请求,将默认网关的IP作为发送IP,自己的MAC地址作为发送的MAC地址,随便请求一个IP地址的MAC地址。这样,网络中的所有计算机都会更新到默认网关的ARP缓存,而将默认网关IP对于的MAC地址改为我们网卡的MAC地址。从而,发送给默认网关的IP数据帧都会发送给我们自己的主机,我们监视完IP数据包后,再将IP数据包转发出去,即可通过ARP欺骗来完成对网络的监控。同样。当我们只进行ARP欺骗,而不进行转发的时候,则整个网络(内网)都将瘫痪。


当然,这些都只是雕虫小计,装了ARP防火墙的机器,你就不能监控了,要实现监控,最好的方式,还是把你的机器,作为内网的默认网关,所有通往外网的机器都通过你的主机。这样比较合适。


七。数据包的最大值:

就像前面我们说的,IP数据包要想继续向下发送,就必须转化为在物理设备上传输的数据帧。对于网络硬件来说,能传输的物理帧的大小是有物理上限的。这个上限值就是最大传输单元MTU{令牌环网4500字节,以太网1500字节}当数据包的比MTU大的时候,数据包是无法封装成帧在网络上传输的,当数据包比MTU小的时候,显然又会浪费网络带宽。

因此,IP数据包最理想的大小应该是相连网络的MTU相符又因为 ,不同的网络MTU可能不同,当数据包需要经过较小MTU的网络时,我们需要将大数据包划分成更小的数据包(分片),以确保他们能通过无力处理大IP数据包的网络。

 

分片发生的位置:相连MTU网络间的路由

分片重组的位置:目标主机

分片发生在IP层,通过IP数据报报头中的“标志”和“段位移”来标识

(标识由)

分片后,形成的还是IP数据包在路由中的处理方式与其他IP数据包一样

 

 分片示意图:


        原始数据包:

IP报头

数据1480字节

 分片以后数据包

 

IP报头

数据600字节

段位移0

 

IP报头

数据600字节

段位移600

 

IP报头

数据280字节

 段位移1200

 


分片的优点:可以让数据包穿过MTU多变的网络。

缺点:分片后形成的多个IP数据包,每个都单独路由,又因为重组发送在目标主机,且又一个分片丢失,则整个原始IP数据包丢失,增大丢包风险。

 

说了这么多,我们还是只是不知道,数据怎么从一台主机到另外一台主机,接下来,我们一一分解,先从局域网开始。

 

八。数据在局域网中是如何传播的?

我们知道,在局域网中,无论是按何种拓扑结构组网,还是按何种方式来处理介质访问权限,任何两个节点之间都存在实际的线路链接

因此,我们通过ARP协议,得到目标主机的MAC地址后,在数据链路层将IP数据包封装为数据帧,将数据帧发送到本地网段上,即可将数据帧成功的交给目标主机(目标主机网卡收到数据帧后,判断MAC地址是否为本网卡MAC地址)。

当你要和很多很多主机通信时,你不可能保证他们都和你在同一网段内

那么不在一个局域网的数据之间,又是如何通信的呢?


九。数据是怎么样实现跨网段传输的?

这就需要路由器通过IP协议来完成此工作了。

下面我们通过一个实际的例子来看:主机A192.168.1.1 需要和主机B:172.16.1.1通信。

          

两个主机并不在同一个局域网,并没有实际的物理线路将他们链接起来。

这个时候,我们在两个网段之间增加一个中转点(路由器),路由器上插有多个网卡,可以同时通过网卡E0接入局域网1 (192.168.1.0/24),同时通过网卡E2接入局域网2(172.168.1.0/24)这样,局域网1中的机器A192.168.1.1)要和局域网2中的机器B172.16.1.1)通信。A将数据将数据包发送到本网段,路由器的E1口接收数据包,再将其通过E2口发送到网段B,主机B即可成功接收来自主机A的信息了。即可实现数据的跨网段传输

大家发现问题了嘛?

没错,我们前面说了“网卡接收数据包后,首先判断MAC地址是不是本机地址,如果不是,则丢弃。”

而且我们说了“ARP请求是发送广播”,而大家都知道,为了防止广播风暴,路由器是不转发广播的。

那么,这个时候,即使A能有办法获得BMAC地址,路由器的E1口上的网卡,MAC地址也不是BMAC地址,这个时候,我们该怎么办呢?

 

十。什么是默认网关?

默认网关是TCP/IP中的一个配置参数,它是处于本地网络上的某个路由器的接口的IP地址。

在有默认网关的情况下,目的地为非本网段的数据包,源主机都发送给默认网关,由默认网关将数据包正确的发送给目标主机

在上图中,网络192.168.1.0/24的默认网关为192.168.1.254,目的地为非本地网段的数据包,都发送给这个IP对应的Router,再由该Router转发给目的主机。

十一:什么是代理ARP?

在没有默认网关的情况下,我们也可以使用代理ARP技术来实现让路由器完成数据的跨网段传输功能

如果我们将网络中所有主机的目的地都设为本地网络,那么当有要发送给外网IP的数据包时,源主机依然会认为目的地为本网段,而使用目的IP发出ARP请求。这个时候,对于目的IP不是本网段的ARP请求,连接在本网段的路由器使用自己的MAC地址回复这个ARP请求。于是主机A将数据发到本地网段,连在本地网络的路由器接收数据,路由器再将数据转发到正确的目的地。其实运行代理ARP的路由器就相当于默认网关

 代理ARP的优点:简化了主机的管理(不用再每个主机都单独配置默认网关了)

  缺点:因为针对每个局域网,外网IP都是很多的,所以:

     1.在路由器上需要保存一个很大的ARP缓存。

         2.每个外网IP都需要发送ARP请求,增大了内网的通信。


在上图中,当没有设置默认网关的时候,主机A发送给主机B的数据包,主机A发送ARP请求后,由连接E1口的Router 用自己E1口的MAC地址回复该ARP请求 。

 

路由器在E1口接到数据包后,怎么样通过E2口发到主机B所在的网段上去?

十二.路由器中数据跨网段传输的具体情形?

每个路由器中都存有一张路由表,记录着目标网段和对应的网卡出口的映射。

在上面的例子中,路由器的E1口收到数据包,根据数据包取出对应的目的网段的地址172.16.1.1,然后路由器查找路由表,根据IP地址,找到通过E2口可以达到目标网络。于是,路由将数据包从E1口读入,穿过路由器,从E2口写出。

所谓的穿过路由器,应该是指:两个网卡上都分别运行着TCP/IP协议,穿过路由,即从路由的内存中,将数据从网卡1的IP程序拷贝到网卡2的IP程序

至此,关于路由中的部分,我们就几乎讲完了,我们再来总结下:

【路由器都有哪些功能?】

   1.交换和转发功能:将数据从路由器的进入接口,穿过路由器,送到输出接口。

  (将一个数据包从一个网段,发送到另外一个网段。)

   2.路由功能:即寻址,通过IP数据包决定正确的下一跳路径

 (通过哪个网卡写出。)

 

【路由器实现跨网段传输的基础?】

1.硬件基础:有多个网卡,同时在多个网段上,同时属于多个局域网。

2.软件基础:代理ARP(主机将目的地址都配置为本网段,路由器代理回应ARP请求)

 

在实际中的很多情况下,两个局域网之间可能不仅仅隔了一个网段,同理,我们可以在多个网段之间,通过多个路由器而使彼此连接起来。其实路由器就是将世界各地的各个局域网都连接起来,得到了我们现在的互联网。

 

十三:路由过程:

1.主机A的传输层将数据交给网络层,网络层加上双方IP地址,TTLIP报头信息,成为IP数据包,网络层将IP数据报交给数据链路层。

2.数据链路层根据IP地址,通过ARP得到MAC,封装为物理帧,通过网卡发出。

3.主机B接收物理帧,根据MAC地址判断:如果目的MAC地址不是本网卡MAC地址,则丢弃;如果是发给自己的,则交给网络层处理。

4.网络层通过IP地址判断:如果是发给自己的,则交给上层协议处理;如果不是发给自己的,则在路由表中查找此IP合理的下一跳地址(即通过哪个网卡发送到下一个网段),并将数据通过内存,从接收数据网卡的IP程序拷贝到需要发送数据网卡的IP程序。在发送网卡中,IP程序将数据包交给链路层,链路层发送ARP请求,得到下一跳的目的MAC地址,封装为帧,发送。

如此反复,直到IP数据包到达最终正确的接收主机。

好了,关于ARPIP都讲了挺多了,可是,为什么有ICMP协议呢?这个协议是干嘛的呢?

 

预知详情,请看下篇《TCP/IP网络层谜云之ICMP》 http://java-mzd.iteye.com/blog/1019089

9
3
分享到:
评论
1 楼 anyuecq258 2012-03-04  
今天在复习网络,就是一直没有找到从A机发送B机的一个真实数据到底经历了什么过程,终于在这里找到了,建议以后教科书上还是写清楚为好,原来的分层写的方式还是有问题,看完了也不知道怎么串起来的

相关推荐

    文网文业务发展报告XX单位.docx

    总结起来,这份文网文业务发展报告详尽展示了XX公司在网络文化领域的业务规划和产品优势,包括其核心产品"中土迷云"的特色玩法和内城建筑系统,反映出公司在网络游戏市场上的竞争力和未来发展的蓝图。通过这样的报告...

    Python学习笔记.docx

    Python是一种高级编程语言,以其简洁明了的语法和强大的功能而受到广泛的欢迎。在Python学习过程中,理解并掌握变量、运算符以及数据类型是至关重要的基础。 首先,Python中的变量可以用来存储各种类型的数据,无需...

    毕业设计选题 -未来生鲜运输车设计.pptx

    毕业设计选题 -未来生鲜运输车设计.pptx

    基于樽海鞘算法优化的极限学习机回归预测及其与BP、GRNN、ELM的性能对比研究

    内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。

    2025年中国生成式AI大会PPT(4-1)

    2025年中国生成式AI大会PPT(4-1)

    无刷直流电机双闭环调速系统的Simulink建模与参数优化

    内容概要:本文详细介绍了基于Simulink平台构建无刷直流电机(BLDC)双闭环调速系统的全过程。首先阐述了双闭环控制系统的基本架构,即外层速度环和内层电流环的工作原理及其相互关系。接着深入探讨了PWM生成模块的设计,特别是占空比计算方法的选择以及三角波频率的设定。文中还提供了详细的电机参数设置指导,如转动惯量、电感、电阻等,并强调了参数选择对系统性能的影响。此外,针对PI控制器的参数整定给出了具体的公式和经验值,同时分享了一些实用的调试技巧,如避免转速超调、处理启动抖动等问题的方法。最后,通过仿真实验展示了系统的稳定性和鲁棒性,验证了所提出方法的有效性。 适用人群:从事电机控制研究的技术人员、自动化工程领域的研究生及科研工作者。 使用场景及目标:适用于需要深入了解和掌握无刷直流电机双闭环调速系统设计与优化的人群。主要目标是帮助读者学会利用Simulink进行BLDC电机控制系统的建模、仿真和参数优化,从而提高系统的稳定性和响应速度。 其他说明:文章不仅提供了理论知识,还包括了许多实践经验和技术细节,有助于读者更好地理解和应用相关技术。

    西门子S7-1200 PLC与施耐德变频器Modbus通讯实现及调试技巧

    内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。

    基于FPGA的Verilog实现IIC主从机驱动及其应用

    内容概要:本文详细介绍了如何使用Verilog在FPGA上实现IIC(Inter-Integrated Circuit)主从机驱动。主要内容包括从机和主机的设计,特别是状态机的实现、寄存器读取、时钟分频策略、SDA线的三态控制等关键技术。文中还提供了详细的代码片段,展示了从机地址匹配逻辑、主机时钟生成逻辑、顶层模块的连接方法以及仿真实验的具体步骤。此外,文章讨论了一些常见的调试问题,如总线竞争、时序不匹配等,并给出了相应的解决方案。 适合人群:具备一定FPGA开发基础的技术人员,尤其是对IIC协议感兴趣的嵌入式系统开发者。 使用场景及目标:适用于需要在FPGA平台上实现高效、可靠的IIC通信的应用场景。主要目标是帮助读者掌握IIC协议的工作原理,能够独立完成IIC主从机系统的开发和调试。 其他说明:文章不仅提供了理论讲解,还包括了大量的实战经验和代码实例,有助于读者更好地理解和应用所学知识。同时,文章还提供了一个思考题,引导读者进一步探索多主设备仲裁机制的设计思路。

    C#开发的拖拽式Halcon可视化抓边抓圆控件,提升机器视觉测量效率

    内容概要:本文介绍了一款基于C#开发的拖拽式Halcon可视化抓边、抓圆控件,旨在简化机器视觉项目中的测量任务。该控件通过拖拽操作即可快速生成测量区域,自动完成边缘坐标提取,并提供实时反馈。文中详细描述了控件的工作原理和技术细节,如坐标系转换、卡尺生成、边缘检测算法封装以及动态参数调试等功能。此外,还讨论了一些常见问题及其解决方案,如坐标系差异、内存管理等。 适合人群:从事机器视觉开发的技术人员,尤其是熟悉C#和Halcon的开发者。 使用场景及目标:适用于需要频繁进行边缘和圆形特征测量的工业自动化项目,能够显著提高测量效率并减少编码工作量。主要目标是将复杂的测量任务转化为简单的拖拽操作,使非专业人员也能轻松完成测量配置。 其他说明:该控件已开源发布在GitHub上,提供了完整的源代码和详细的使用指南。未来计划扩展更多高级功能,如自动路径规划和亚像素级齿轮齿距检测等。

    西门子200Smart与维纶触摸屏在疫苗车间控制系统的应用:配液、发酵、纯化及CIP清洗工艺详解

    内容概要:本文详细介绍了西门子200Smart PLC与维纶触摸屏在某疫苗车间控制系统的具体应用,涵盖配液、发酵、纯化及CIP清洗四个主要工艺环节。文中不仅展示了具体的编程代码和技术细节,还分享了许多实战经验和调试技巧。例如,在配液罐中,通过模拟量处理确保温度和液位的精确控制;发酵罐部分,着重讨论了PID参数整定和USS通讯控制变频器的方法;纯化过程中,强调了双PID串级控制的应用;CIP清洗环节,则涉及复杂的定时器逻辑和阀门联锁机制。此外,文章还提到了一些常见的陷阱及其解决方案,如通讯干扰、状态机切换等问题。 适合人群:具有一定PLC编程基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要深入了解PLC与触摸屏集成控制系统的工程师,帮助他们在实际项目中更好地理解和应用相关技术和方法,提高系统的稳定性和可靠性。 其他说明:文章提供了大量实战经验和代码片段,有助于读者快速掌握关键技术点,并避免常见错误。同时,文中提到的一些优化措施和调试技巧对提升系统性能非常有帮助。

    计算机网络结课设计:通过思科Cisco进行中小型校园网搭建

    计算机网络课程的结课设计是使用思科模拟器搭建一个中小型校园网,当时花了几天时间查阅相关博客总算是做出来了,现在免费上传CSDN,希望小伙伴们能给博客一套三连支持

    芋道(yudao)开发技术文档

    《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、

    基于信息间隙决策的综合能源系统优化调度模型及其应用

    内容概要:本文介绍了一种先进的综合能源系统优化调度模型,该模型将风电、光伏、光热发电等新能源与燃气轮机、燃气锅炉等传统能源设备相结合,利用信息间隙决策(IGDT)处理不确定性。模型中引入了P2G(电转气)装置和碳捕集技术,实现了碳经济闭环。通过多能转换和储能系统的协同调度,提高了系统的灵活性和鲁棒性。文中详细介绍了模型的关键组件和技术实现,包括IGDT的鲁棒性参数设置、P2G与碳捕集的协同控制、储能系统的三维协同调度等。此外,模型展示了在极端天气和负荷波动下的优异表现,显著降低了碳排放成本并提高了能源利用效率。 适合人群:从事能源系统优化、电力调度、碳交易等相关领域的研究人员和工程师。 使用场景及目标:适用于需要处理多种能源形式和不确定性的综合能源系统调度场景。主要目标是提高系统的灵活性、鲁棒性和经济效益,减少碳排放。 其他说明:模型具有良好的扩展性,可以通过修改配置文件轻松集成新的能源设备。代码中包含了详细的注释和公式推导,便于理解和进一步改进。

    毕业设计的论文撰写、终期答辩相关的资源.m

    毕业设计的论文撰写、终期答辩相关的资源

    机器学习(预测模型):专注于 2024 年出现的漏洞(CVE)信息数据集

    该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。

    建模大赛入门指南:从零基础到实战应用.pdf

    内容概要:本文档作为建模大赛的入门指南,详细介绍了建模大赛的概念、类型、竞赛流程、核心步骤与技巧,并提供实战案例解析。文档首先概述了建模大赛,指出其以数学、计算机技术为核心,主要分为数学建模、3D建模和AI大模型竞赛三类。接着深入解析了数学建模竞赛,涵盖组队策略(如三人分别负责建模、编程、论文写作)、时间安排(72小时内完成全流程)以及问题分析、模型建立、编程实现和论文撰写的要点。文中还提供了物流路径优化的实战案例,展示了如何将实际问题转化为图论问题并采用Dijkstra或蚁群算法求解。最后,文档推荐了不同类型建模的学习资源与工具,并给出了新手避坑建议,如避免过度复杂化模型、重视可视化呈现等。; 适合人群:对建模大赛感兴趣的初学者,特别是高校学生及希望参与数学建模竞赛的新手。; 使用场景及目标:①了解建模大赛的基本概念和分类;②掌握数学建模竞赛的具体流程与分工;③学习如何将实际问题转化为数学模型并求解;④获取实战经验和常见错误规避方法。; 其他说明:文档不仅提供了理论知识,还结合具体实例和代码片段帮助读者更好地理解和实践建模过程。建议新手从中小型赛事开始积累经验,逐步提升技能水平。

    protobuf-6.30.1-cp310-abi3-win32.whl

    该资源为protobuf-6.30.1-cp310-abi3-win32.whl,欢迎下载使用哦!

    大数据环境构建:从虚拟机创建到Ambari集群部署的技术指南

    内容概要:本文档详细介绍了基于Linux系统的大数据环境搭建流程,涵盖从虚拟机创建到集群建立的全过程。首先,通过一系列步骤创建并配置虚拟机,包括设置IP地址、安装MySQL数据库等操作。接着,重点讲解了Ambari的安装与配置,涉及关闭防火墙、设置免密登录、安装时间同步服务(ntp)、HTTP服务以及配置YUM源等关键环节。最后,完成了Ambari数据库的创建、JDK的安装、Ambari server和agent的部署,并指导用户创建集群。整个过程中还提供了针对可能出现的问题及其解决方案,确保各组件顺利安装与配置。 适合人群:具有Linux基础操作技能的数据工程师或运维人员,尤其是那些需要构建和管理大数据平台的专业人士。 使用场景及目标:适用于希望快速搭建稳定可靠的大数据平台的企业或个人开发者。通过本指南可以掌握如何利用Ambari工具自动化部署Hadoop生态系统中的各个组件,从而提高工作效率,降低维护成本。 其他说明:文档中包含了大量具体的命令行指令和配置细节,建议读者按照顺序逐步操作,并注意记录下重要的参数值以便后续参考。此外,在遇到问题时可参照提供的解决方案进行排查,必要时查阅官方文档获取更多信息。

    MATLAB中基于LMS算法的一维时间序列信号降噪技术及其实现

    内容概要:本文详细介绍了如何在MATLAB R2018A中使用最小均方(LMS)自适应滤波算法对一维时间序列信号进行降噪处理,特别是针对心电图(ECG)信号的应用。首先,通过生成模拟的ECG信号并加入随机噪声,创建了一个带有噪声的时间序列。然后,实现了LMS算法的核心部分,包括滤波器阶数、步长参数的选择以及权重更新规则的设计。文中还提供了详细的代码示例,展示了如何构建和训练自适应滤波器,并通过图形化方式比较了原始信号、加噪信号与经过LMS处理后的降噪信号之间的差异。此外,作者分享了一些实用的经验和技术要点,如参数选择的影响、误差曲线的解读等。 适用人群:适用于具有一定MATLAB编程基础并对信号处理感兴趣的科研人员、工程师或学生。 使用场景及目标:本教程旨在帮助读者掌握LMS算法的基本原理及其在实际项目中的应用方法,特别是在生物医学工程、机械故障诊断等领域中处理含噪信号的任务。同时,也为进一步探索其他类型的自适应滤波技术和扩展到不同的信号处理任务奠定了基础。 其他说明:尽管LMS算法在处理平稳噪声方面表现出色,但在面对突发性的强干扰时仍存在一定局限性。因此,在某些特殊场合下,可能需要与其他滤波技术相结合以获得更好的效果。

    基于TMS320F2812的光伏并网逆变器设计与MATLAB仿真及DSP代码实现

    内容概要:本文详细介绍了基于TMS320F2812 DSP芯片的光伏并网逆变器设计方案,涵盖了主电路架构、控制算法、锁相环实现、环流抑制等多个关键技术点。首先,文中阐述了双级式结构的主电路设计,前级Boost升压将光伏板输出电压提升至约600V,后级采用三电平NPC拓扑的IGBT桥进行逆变。接着,深入探讨了核心控制算法,如电流PI调节器、锁相环(SOFGI)、环流抑制等,并提供了详细的MATLAB仿真模型和DSP代码实现。此外,还特别强调了PWM死区时间配置、ADC采样时序等问题的实际解决方案。最终,通过实验验证,该方案实现了THD小于3%,MPPT效率达98.7%,并有效降低了并联环流。 适合人群:从事光伏并网逆变器开发的电力电子工程师和技术研究人员。 使用场景及目标:适用于光伏并网逆变器的研发阶段,帮助工程师理解和实现高效稳定的逆变器控制系统,提高系统的性能指标,减少开发过程中常见的错误。 其他说明:文中提供的MATLAB仿真模型和DSP代码可以作为实际项目开发的重要参考资料,有助于缩短开发周期,提高成功率。

Global site tag (gtag.js) - Google Analytics