`

范蠡《陶朱公生意经》

 
阅读更多

摘自:http://apps.hi.baidu.com/share/detail/7417185

范蠡《陶朱公生意经》

   

生意要勤快,切勿懒惰,懒惰则百事废;

价格要定明,切勿含糊,含糊则争执多

费用要节俭,切勿奢华,奢华则钱财竭;

赊欠要识人,切勿滥出,滥出则血本亏

货物要百验,切勿滥入,滥入则货价减;

钱财要明慎,切勿糊涂,糊涂则弊端生;

临事要尽责,切勿妄托,妄托则受害大;

账目要稽查,切勿懈怠,懈怠则资本滞;

接纳要谦和,切勿暴躁,暴躁则交易少;

主心要安静,切勿妄动,妄动则误事多;

工作要精细,切勿粗糙,粗糙则出劣品;

谈话要规矩,切勿浮躁,浮躁则失事多;

出入要谨慎,切勿潦草,潦草则错误多;

用人要公正,切勿歪斜,歪斜则托付难;

优劣要细分,切勿混淆,混淆则耗用大;

货物要修正,切勿散漫,散漫则查点难;

期限要约定,切勿马虎,马虎则失信用;

买卖要随时,切勿拖延,拖延则失良机。

  

  

 

 

 

范蠡《陶朱公理财十二则》

范蠡(前536-448年)

  

能识人:知人善恶,赈目不负。
能用人:因财器便,任事可赖。

能知机:善贮时宜,不致蚀本。

能倡率:躬行以率,观感自生。

能整顿:货物整齐,夺人心目。

能敏捷:犹豫不决,到老无成。

能接纳:礼义相交,顾客者众。

能安业:弃旧迎新,商贾大病。

能辩论:生财之道,开引其机。

能办货:置货不拘,获利必多。

能收帐:勤谨不怠,取讨自多。

能还帐:多少先后,酌中而行。

  

  

范蠡《陶朱公理财十二戒》

  
莫悭吝:些少不施,令人怀怨。

莫浮华:用度不节,破败之端。
莫畏烦:取讨不力,付之无有。

莫优柔:胸无果敢,经营不振。
莫狂躁:暴以待人,取怨难免。

莫固执:拘泥不通,便成枯木。
莫贪赊:贪赊价昂,畏还生耻。

莫懒收:轻放懒收,血本无归。
莫痴货:优劣不分,贻害罪浅。

莫味时:依时不兑,坐味先机。
莫争趋:货贵争趋,获利必先。

莫怕蓄:贱极贮积,恢复不难。

  

    

范蠡生平大事

  

公元前536年(鲁昭公六年、楚灵王五年)范蠡出生宛地三户邑,其时孔子十五岁。

公元前516年(鲁昭公二十五年、楚平王十三年、吴王僚十一年);宛令文种见范蠡,范蠡时年二十岁。

公元前521年(鲁昭公三十一年、楚昭王五年、吴阖闾四年);范蠡邀文种入越,时年范蠡二十五岁。

公元前494年(鲁哀公三年、楚昭王二十二年、越勾践三年);勾践兵败西于会稽山,始重用范蠡、文种等。范蠡时年42岁。

公元前493年(鲁哀公二年、楚昭王二十三年、越勾践四年);勾践、范蠡君臣入吴为奴,范蠡时年43岁。

公元前490年(鲁哀公五年、楚昭王二十六年、越勾践七年、吴夫差六年);勾践、范蠡君臣离吴返越,范蠡时年46岁。

公元前486年(鲁哀公九年、楚惠王三年、越勾践十一年、吴夫差十年);勾践欲起兵伐吴,范蠡劝阻,范蠡时年50岁。

公元前484年(鲁哀公十一年、楚惠王五年、越勾践十三年、吴夫差十二年);吴再次伐齐,占于艾陵,越王君臣朝见吴王,君臣皆有贿赂,进一步麻痹吴人,夫差杀伍子胥。范蠡时年52岁。

公元前482年(鲁哀公十三年、楚惠王七年、越勾践十五年、吴夫差十四年);吴、晋黄池之会,越师乘机袭击吴国,大败之,杀吴太子等,年底吴越讲和。范蠡时年54岁。

公元前479年(鲁哀公十六年、楚惠王十年、越勾践十八年、吴夫差十七年);越兴师伐吴,兵至于五湖。范蠡时年57岁。

公元前478年(鲁哀公十七年、楚惠王十一年、越勾践十九年、吴夫差十八年);三月,越伐吴、吴师还战于笠泽、双方夹吴松江而阵、越人大败吴师。范蠡时年58岁。

公元前475年(鲁哀公二十年,楚惠王十四年,越勾践二十二年,吴夫差二十一年);十一月越围吴、范蠡采用围而不攻的战略,令吴师自溃。范蠡时年61岁。

公元前473年(鲁哀公二十二年,楚惠王十六年,越勾践二十四年,吴夫差二十三年);年底,越灭吴,夫差自杀,范蠡时年63岁。

公元前468年(鲁哀公二十七年,楚惠王二十一年,越勾践二十九年);越王实现霸业,范蠡即泛舟五湖,时年68岁。
 
公元前465年,越王勾践卒,时年范蠡71岁。
 
公元前448年,范蠡卒,时年88岁!

  

分享到:
评论
1 楼 Coder211 2011-05-10  
 

相关推荐

    春秋末期政治家范蠡的简介.pdf

    他的这些原则和理念在《陶朱公生意经》中得到体现,成为了后世商人遵循的准则。 总的来说,范蠡是一位智勇双全的政治家和深思熟虑的商人,他的生平事迹和经营理念不仅体现了古代中国人的智慧,也为现代商业世界提供...

    开业花篮贺词推荐精选.doc

    “陶朱公”指的是范蠡,他不仅是中国历史上著名的政治家、军事家,也是著名的商人,有“陶朱事业”之称,代表着商业智慧和富裕繁荣。这句话的含义在于希望经营者能够拥有古代商人的智慧和品德,使企业如同春天一样...

    开业条幅贺词2篇.doc

    - "富陶朱学术,到处皆春",陶朱公即范蠡,古代著名商人,此句寓意运用他的经营之道,可以使事业处处繁荣。 4. **吉祥寓意与场景化祝福**: - "吉祥开业,大富启源",祝福开业大吉,财富的源头滚滚而来。 - ...

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    梦限大mewtype成员 藤都子RVC模型

    考虑微网新能源经济消纳的共享储能优化配置附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    tokenizers-0.30.0.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    人形机器人是当今世界科技领域最具潜力和前景的产业之一 随着科技的不断进步和人工智能技术的快速发展,人形机器人作为未来产业的新赛道和经济增长的新引擎,将深刻变革人类生产生活方式,重塑全球产业发展格局

    人形机器人产业的发展需要人工智能、高端制造、新材料等先进技术的协同创新和突破。

    【状态估计】用于非标量系统估计的最优卡尔曼滤波附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    开关电源的尖峰干扰及其抑制.zip

    开关电源的尖峰干扰及其抑制.zip

    房地产培训 -新进业务员压马路市调培训.ppt

    房地产培训 -新进业务员压马路市调培训.ppt

    MATLAB实现计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度

    内容概要:本文探讨了基于MATLAB平台的虚拟电厂优化调度方法,特别关注电转气(P2G)协同、碳捕集技术和垃圾焚烧的应用。文中介绍了虚拟电厂的概念及其重要性,详细解释了碳捕集、需求响应和电转气协同调度的关键技术,并展示了如何使用MATLAB和CPLEX求解器进行优化调度的具体步骤。通过定义决策变量、构建目标函数和设定约束条件,最终实现了多目标优化,即经济性最优和碳排放最低。此外,还讨论了一些常见的代码实现技巧和潜在的问题解决方案。 适合人群:从事能源管理和优化调度研究的专业人士,尤其是那些熟悉MATLAB编程和优化算法的人士。 使用场景及目标:适用于希望深入了解虚拟电厂运作机制和技术实现的研究人员和工程师。主要目标是通过优化调度提高能源利用效率,减少碳排放,降低成本。 其他说明:文章提供了详细的代码片段和理论分析,有助于读者更好地理解和复现实验结果。同时,强调了在实际应用中需要注意的一些细节问题,如约束条件的平衡、求解器配置等。

    在网格化数据集上轻松执行 2D 高通、低通、带通或带阻滤波器研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-pinecone-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-pinecone-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-pinecone-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-pinecone-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-pinecone-store,1.0.0-M7,org.springframework.ai.vectorstore.pinecone,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,pinecone,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-pinecone

    基于MATLAB混合整数规划的微网电池储能容量优化配置

    内容概要:本文详细介绍了如何使用MATLAB及其优化工具箱,通过混合整数规划(MILP)方法对微网电池储能系统的容量进行优化配置。主要内容包括定义目标函数(如最小化运行成本),设置约束条件(如充放电功率限制、能量平衡约束),并引入决策变量(如电池容量、充放电功率和状态)。文中提供了具体的MATLAB代码示例,演示了如何将实际问题转化为数学模型并求解。此外,还讨论了一些实用技巧,如避免充放电互斥冲突、考虑电池寿命损耗等。 适用人群:从事微电网设计与运维的技术人员,尤其是那些希望通过优化算法提高系统性能和经济效益的专业人士。 使用场景及目标:适用于需要确定最佳电池储能容量的微电网项目,旨在降低总体运行成本,提高系统的稳定性和可靠性。具体应用场景包括工业园区、商业建筑或其他分布式能源系统。 其他说明:文章强调了模型的实际应用价值,并指出通过精确控制充放电策略可以显著减少不必要的容量闲置,从而节省大量资金。同时提醒读者注意模型的时间粒度选择、电池退化成本等因素的影响。

    langchain4j-ollama-1.0.0-beta1.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    光伏离网并网逆变器设计:基于TMS320F28335的数字控制与SPWM技术详解

    内容概要:本文详细介绍了基于TMS320F28335的光伏离网并网逆变器设计方案,涵盖了从硬件架构到软件控制的各个方面。首先,文章阐述了TMS320F28335作为高性能DSP的优势及其初始化配置方法。其次,探讨了逆变器的数字控制策略,如双闭环控制(电压外环和电流内环)的具体实现方式。然后,深入讲解了SPWM(正弦脉宽调制)技术,包括SPWM波的生成方法和相关代码示例。此外,还讨论了硬件保护逻辑、过流检测、死区时间配置等实际应用中的注意事项。最后,提供了调试经验和学习资源建议。 适合人群:从事光伏逆变器设计、嵌入式系统开发的技术人员,尤其是有一定DSP编程基础的研发人员。 使用场景及目标:适用于需要深入了解光伏逆变器设计原理和技术实现的研究人员和工程师。主要目标是掌握基于TMS320F28335的逆变器控制系统设计,包括数字控制策略和SPWM技术的应用。 其他说明:文中提供的代码示例和实践经验有助于读者更好地理解和应用于实际项目中。建议读者结合TI官方提供的学习资料进行进一步学习和实践。

    【医疗影像分析】深度学习技术在医疗影像分析中的应用优势及未来发展方向:自动特征学习、高精度高效处理、多模态数据融合、个性化治疗与预测、实时远程支持

    内容概要:深度学习在医疗影像分析中展现出显著的优势,主要体现在自动特征学习、高准确性和效率、多模态数据融合与综合分析、个性化治疗与预测、减少主观性、处理复杂和高维数据、实时分析与远程医疗支持、数据挖掘与科研突破以及可扩展性与持续优化九个方面。通过卷积神经网络(CNN)、U-Net等模型,深度学习能够自动从影像中提取多层次特征,无需手动干预,在分类、分割任务中表现出色,处理速度远超人工。此外,它还能够整合多源数据,提供全面的诊断依据,实现个性化治疗建议,减少误诊和漏诊,支持实时分析和远程医疗,挖掘病理模式并加速研究,同时具有可扩展性和持续优化的能力。; 适合人群:医疗行业从业者、科研人员、计算机视觉和深度学习领域的研究人员。; 使用场景及目标:①用于医疗影像的自动特征提取和分类,如乳腺癌筛查、皮肤癌诊断等;②整合多模态数据,如CT、MRI等,提高诊断准确性;③提供个性化治疗建议,优化治疗方案;④支持实时分析和远程医疗,尤其适用于偏远地区的急诊场景;⑤挖掘病理模式,加速疾病机制的研究。; 其他说明:深度学习正逐渐成为医疗影像分析的核心诊断伙伴,未来发展方向包括增强可解释性、保护数据隐私和轻量化部署,旨在进一步提升医疗效率和患者护理质量。

    深度学习机器学习子领域关键技术解析:神经网络基础、常见架构及应用场景综述

    内容概要:深度学习是机器学习的一个子领域,通过构建多层次的“深度神经网络”来模拟人脑结构,从而学习和提取数据的复杂特征。文章介绍了深度学习的核心概念,包括神经元、多层感知机、深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等常见网络结构。同时,详细讲解了激活函数、损失函数与优化器的作用。此外,还探讨了深度学习的关键突破,如大数据与算力的支持、正则化技术和迁移学习的应用。文中列举了深度学习在计算机视觉、自然语言处理、语音与音频以及强化学习等领域的应用场景,并指出了其面临的挑战,如数据依赖、计算成本和可解释性问题。最后提供了使用PyTorch和TensorFlow/Keras框架的经典代码示例,涵盖图像分类、文本生成和迁移学习等内容。; 适合人群:对机器学习有一定了解,希望深入学习深度学习理论和技术的研究人员、工程师及学生。; 使用场景及目标:①理解深度学习的基本原理和核心概念;②掌握常见深度学习框架的使用方法,如PyTorch和TensorFlow;③能够根据具体应用场景选择合适的网络结构和算法进行实践。; 其他说明:本文不仅提供了理论知识,还附带了详细的代码示例,便于读者动手实践。建议读者结合理论与实践,逐步深入理解深度学习的各个方面。

    深度学习答辩PPT案例展示

    适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考

Global site tag (gtag.js) - Google Analytics