分布式哈希和一致性哈希是分布式存储和p2p网络中说的比较多的两个概念了。介绍的论文很多,这里做一个入门性质的介绍。
分布式哈希(DHT)
两个key point:每个节点只维护一部分路由;每个节点只存储一部分数据。从而实现整个网络中的寻址和存储。
DHT只是一个概念,提出了这样一种网络模型。并且说明它是对分布式存储很有好处的。但具体怎么实现,并不是DHT的范畴。
一致性哈希:
DHT的一种实现。本质还是一个哈希算法。回想平时我们做负载均衡,按querystring签名对后端节点取模是最简单也是最常用的算法,但节点的增删后所造成的问题显而易见,原有的请求几乎都落不到同一台机器上。优化一点的是carp算法(用机器ip和querystring一起做hash,选取hash值最小的一台),只让1/n的数据受到影响。
一致性哈希,似乎最早提出是在分布式cache里面的,让节点震荡的时候,影响最小,以提高分布式cache的命中率。不过现在更多的应用在分布式存储和p2p系统里面。
一致性哈希也只是提出四个概念和原则,并没有提及具体实现:
1、balance:哈希结果尽可能的平均分散到各个节点上,使得每个节点都能得到充分利用。
2、Monotonicity:上面也说了,如果是用签名取模算法,节点变更会使得整个网络的映射关系更改。如果是carp,会使得1/n的映射关系更改。一致性哈希的目标,是节点变更,不会改变网络的映射关系。
3、spread:同一份数据,存储到不同的节点上,换言之就是系统冗余。一致性哈希致力于降低系统冗度。
4、load:负载分散,和balance其实是差不多的意思,不过这里更多是指数据存储的均衡,balance是指访的均衡。
Chord算法:
一致性哈希有多种实现算法,最关键的问题在于如何定义数据分割策略和节点快速查询。
chord算是最为经典的实现。cassandra中的DHT,基本是chord的简化版。
网络中每个节点分配一个唯一id,可以通过机器的mac地址做sha1,是网络发现的基础。
假设整个网络有N 个节点,并且网络是呈环状。两个节点间的距离定义为节点间下标差。每个节点会存储一张路由表(finger表),表内顺时针按照离本节点2、4、8、16、32.……2i的距离选定log2N个其他节点的ip信息来记录,主要是为了查询加速。
存储:数据被按一定规则切割,每一份数据也有一个独立id(查询key),并且和节点id的值域是一样的。然后查找节点,如果存在和数据id一样的节点id,则将这份数据存在该节点上;如果不存在,则存储到离该数据id距离最近的节点上。同时,为了保证数 据的可靠性,会顺时针往下找K个冗余节点,存储这份数据。一般认为K=3是必须的。
下图简单描述了一个chord网络的部署,绿色节点为机器,编码为hash值。N0节点的finger表可以看出N0节点的路由规则,其他节点也有类似的finger表。蓝色节点为数据,根据hash值找到最近的节点并存储。虚线所指是表示冗余存储。
查询:先从自己的路由表中,找一个和数据id距离最近、并且存活在网络中的节点next。如果该节点的 id巧合和数据id相等,那么恭喜你。如果不相等,则到next进行递归查找。一般或需要经过多次查询才能找到数据所在的节点,而这个次数是可以被证明小于等于log2N的。
在这个查询的过程中就体现了路由表的选取优势了,其实是实现了一个二分查找,从每个节点来观察网络,都是将网络分成了log2N块,最大一块里面有N/2个节点。路由表里面其实是记录了每一块的第一个节点。这样每一次查询,最少排除了一半的节点。保证在 log2N次内找到目标节点。
下图简单展示了从N0节点查找N21节点的一个数据的过程,通过finger表经过2跳到达目的地。
新增一个节点i:需要预先知道网络中已经存活的一个节点j,然后通过和节点j交互,更新自己和其他节点的路由表。并且,需要将离自己距离最近的节点中的数据copy过来,以提供数据服务。
损失一个节点:路由算法会自动跳过这个节点,并且依靠数据的冗余来持续提供服务。
KAD算法(Kademlia)
kad算法其实是在chord上做的优化。主要是两个点:
1、用二进制(32/64/128)表示一个节点的id,两节点的id异或运算得到节点间的距离。
2、 每个节点保持的路由信息更丰富,同样是将整个网络按照划分成log2N份,在chord中,是保持log2N个路由节点,但在kad里面,是保存了 log2N个队列。每个队列长度为配置值K,记录网络中对应节点区域的多个节点,并且根据活跃时间对这些节点进行换入换出。
第一点是方便进行网络划分,节点按照二进制中每一bit的0或1建成一棵二叉树。
第二点是使得节点查询更迅速。从分割情况我们就可以得知,最坏情况不会差于chord,但保存更多的节点使得命中概率更高。另外队列中根据活跃时间进行换入换出,更有利于在p2p这种节点变更频繁的网络中快速找到有效的节点。
关于kad的介绍,这篇文章讲的比较详细wenku.baidu.com/view/ee91580216fc700abb68fcae.html
相关推荐
一致性哈希算法最初由麻省理工学院的K等人提出,并被广泛应用于分布式系统中,以解决节点动态变化时数据一致性问题。其核心思想是通过引入哈希环,将数据对象均匀分布在哈希环上的不同节点中,以此降低节点变更对...
DHT通常采用Chord、Pastry、Kademlia等一致性哈希算法来实现这种映射关系。 ### 2. 环的原子管理算法 #### 2.1 环管理中存在的问题 在分布式系统中,节点的加入、离开以及网络的动态变化会导致环的不稳定性。这些...
分布式哈希表(Distributed Hash Table,简称DHT)是一种在分布式系统中用以实现大规模数据存储和快速定位的算法。DHT通过分布式的方式将数据以键值对的形式存储在各个节点上,从而实现无需中心服务器的高效数据管理...
一致性哈希算法是一种在分布式系统中用于解决数据分发和负载均衡问题的算法。随着互联网技术的快速发展,分布式系统已经成为支撑大规模服务的关键技术之一。在分布式系统中,多个节点通过网络协同工作,提供高可用性...
整体来看,文章介绍的改进一致性哈希算法,通过在分布式存储系统中对节点进行逻辑划分、引入主从模式以及分析不同读写策略的数据一致性,旨在提升系统的性能和可靠性。这对于推动分布式存储系统的进一步发展具有重要...
一致性哈希算法是一种在分布式系统中解决数据分片和负载均衡问题的算法,它主要解决了在动态添加或移除节点时,尽可能少地改变已经存在的数据分布。在云计算和大数据处理领域,一致性哈希被广泛应用,例如在分布式...
总之,这个压缩包中的内容可能包含了C++实现分布式哈希表的代码,包括哈希函数设计、网络通信协议实现、路由算法和数据存储策略等方面。通过学习和理解这部分代码,你可以深入了解分布式系统的设计与实现,以及如何...
本文针对这一问题,深入研究了一致性哈希算法在分布式数据库扩展中的应用,并提出了一种创新的扩展方法,旨在提高扩展效率,降低扩展成本,为大数据环境下的数据库管理带来新的优化方案。 一致性哈希算法最初由...
分布式哈希表(Distributed Hash Table,DHT)是一种用于分布式系统中的数据存储技术,它将数据分散存储在多台独立的设备...Pastry 的设计和实现对于理解分布式系统、一致性哈希以及 Go 语言的应用有着重要的学习价值。
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,它解决了在分布式环境中数据分片和负载均衡的问题。在传统的哈希算法中,如果增加或减少服务器节点,会导致大量数据重新分配,而一致性哈希...
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,旨在解决在分布式环境中数据分布不均匀的问题。Ketama算法是基于一致性哈希的一种优化实现,由Last.fm公司的Simon Willison提出,其目标是在...
一致性哈希(Consistent Hashing)是一种特殊的哈希算法,它在分布式缓存和负载均衡等场景中被广泛应用。它通过将数据和服务器节点映射到一个哈希环上,提供了一种在节点增减时能够最小化数据重新分配的机制。本文将...
12-一致性哈希分布式算法原理与实现.wmv
分布式表决作为一种数据汇总的手段,在多个节点上独立计算后汇总信息,以实现一致性决策或结果。 文章最后提到了对等网络(Peer-to-Peer,P2P)的概念,这是一种网络结构,其中每个节点既是客户端又是服务器,节点...
为了进一步提高数据分布的均匀性和系统的灵活性,一致性哈希算法引入了虚拟节点的概念。虚拟节点本质上是物理节点的副本,但拥有唯一的标识符,这些标识符通过哈希函数映射到哈希环上。每个物理节点可以拥有一个或多...
一致性哈希算法由David Karger等人在1997年提出,它是一种特殊的哈希算法,主要用于分布式系统中实现负载均衡。与传统的哈希算法不同,一致性哈希算法在处理节点增减时,能够最小化重新分配数据的数量,从而提高系统...
在给定的压缩包文件中,“哈希表_使用Go实现的用于IB-Trust的分布式哈希表”可能是实现上述概念的一个具体项目。这个项目可能包含了DHT的实现代码,包括节点管理、路由算法、数据存储和一致性策略等部分。通过对该...
一致性哈希算法(Consistent Hashing)是一种常用于分布式系统中的数据分片策略,它有效地解决了数据在多台服务器间均匀分布的问题,同时减少了因节点加入或离开时的数据迁移成本。 首先,一致性哈希的基本原理是将...
一致性哈希算法是一种分布式哈希表(DHT)中用于解决数据分片和负载均衡问题的算法。在大型分布式系统中,例如缓存系统、分布式数据库等,一致性哈希能够确保当节点加入或离开时,尽可能少的数据需要迁移,从而保持...