- 浏览: 27749 次
- 性别:
- 来自: 北京
文章分类
最新评论
浅谈java内存模型
不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要清楚在jvm内存模型的基础上,如果解决多线程的可见性和有序性。
那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下:
(1) 从主存复制变量到当前工作内存 (read and load)
(2) 执行代码,改变共享变量值 (use and assign)
(3) 用工作内存数据刷新主存相关内容 (store and write)
JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。
那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本(use),也就是说 read,load,use顺序可以由JVM实现系统决定。
线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如:
Java代码
for(int i=0;i<10;i++)
a++;
for(int i=0;i<10;i++)
a++;
线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x加1
3 将x加1后的值写回主 存
如果另外一个线程b执行x=x-1,执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x减1
3 将x减1后的值写回主存
那么显然,最终的x的值是不可靠的。假设x现在为10,线程a加1,线程b减1,从表面上看,似乎最终x还是为10,但是多线程情况下会有这种情况发生:
1:线程a从主存读取x副本到工作内存,工作内存中x值为10
2:线程b从主存读取x副本到工作内存,工作内存中x值为10
3:线程a将工作内存中x加1,工作内存中x值为11
4:线程a将x提交主存中,主存中x为11
5:线程b将工作内存中x值减1,工作内存中x值为9
6:线程b将x提交到中主存中,主存中x为9
同样,x有可能为11,如果x是一个银行账户,线程a存款,线程b扣款,显然这样是有严重问题的,要解决这个问题,必须保证线程a和线程b是有序执行的,并且每个线程执行的加1或减1是一个原子操作。看看下面代码:
Java代码
public class Account {
private int balance;
public Account(int balance) {
this.balance = balance;
}
public int getBalance() {
return balance;
}
public void add(int num) {
balance = balance + num;
}
public void withdraw(int num) {
balance = balance - num;
}
public static void main(String[] args) throws InterruptedException {
Account account = new Account(1000);
Thread a = new Thread(new AddThread(account, 20), "add");
Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");
a.start();
b.start();
a.join();
b.join();
System.out.println(account.getBalance());
}
static class AddThread implements Runnable {
Account account;
int amount;
public AddThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 200000; i++) {
account.add(amount);
}
}
}
static class WithdrawThread implements Runnable {
Account account;
int amount;
public WithdrawThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 100000; i++) {
account.withdraw(amount);
}
}
}
}
public class Account {
private int balance;
public Account(int balance) {
this.balance = balance;
}
public int getBalance() {
return balance;
}
public void add(int num) {
balance = balance + num;
}
public void withdraw(int num) {
balance = balance - num;
}
public static void main(String[] args) throws InterruptedException {
Account account = new Account(1000);
Thread a = new Thread(new AddThread(account, 20), "add");
Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");
a.start();
b.start();
a.join();
b.join();
System.out.println(account.getBalance());
}
static class AddThread implements Runnable {
Account account;
int amount;
public AddThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 200000; i++) {
account.add(amount);
}
}
}
static class WithdrawThread implements Runnable {
Account account;
int amount;
public WithdrawThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 100000; i++) {
account.withdraw(amount);
}
}
}
}
第一次执行结果为10200,第二次执行结果为1060,每次执行的结果都是不确定的,因为线程的执行顺序是不可预见的。这是java同步产生的根源,synchronized关键字保证了多个线程对于同步块是互斥的,synchronized作为一种同步手段,解决java多线程的执行有序性和内存可见性,而volatile关键字之解决多线程的内存可见性问题。后面将会详细介绍。
synchronized关键字
上面说了,java用synchronized关键字做为多线程并发环境的执行有序性的保证手段之一。当一段代码会修改共享变量,这一段代码成为互斥区或临界区,为了保证共享变量的正确性,synchronized标示了临界区。典型的用法如下:
Java代码
synchronized(锁){
临界区代码
}
synchronized(锁){
临界区代码
}
为了保证银行账户的安全,可以操作账户的方法如下:
Java代码
public synchronized void add(int num) {
balance = balance + num;
}
public synchronized void withdraw(int num) {
balance = balance - num;
}
public synchronized void add(int num) {
balance = balance + num;
}
public synchronized void withdraw(int num) {
balance = balance - num;
}
刚才不是说了synchronized的用法是这样的吗:
Java代码
synchronized(锁){
临界区代码
}
synchronized(锁){
临界区代码
}
那么对于public synchronized void add(int num)这种情况,意味着什么呢?其实这种情况,锁就是这个方法所在的对象。同理,如果方法是public static synchronized void add(int num),那么锁就是这个方法所在的class。
理论上,每个对象都可以做为锁,但一个对象做为锁时,应该被多个线程共享,这样才显得有意义,在并发环境下,一个没有共享的对象作为锁是没有意义的。假如有这样的代码:
Java代码
public class ThreadTest{
public void test(){
Object lock=new Object();
synchronized (lock){
//do something
}
}
}
public class ThreadTest{
public void test(){
Object lock=new Object();
synchronized (lock){
//do something
}
}
}
lock变量作为一个锁存在根本没有意义,因为它根本不是共享对象,每个线程进来都会执行Object lock=new Object();每个线程都有自己的lock,根本不存在锁竞争。
每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个被线程被唤醒(notify)后,才会进入到就绪队列,等待cpu的调度。当一开始线程a第一次执行account.add方法时,jvm会检查锁对象account的就绪队列是否已经有线程在等待,如果有则表明account的锁已经被占用了,由于是第一次运行,account的就绪队列为空,所以线程a获得了锁,执行account.add方法。如果恰好在这个时候,线程b要执行account.withdraw方法,因为线程a已经获得了锁还没有释放,所以线程b要进入account的就绪队列,等到得到锁后才可以执行。
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
生产者/消费者模式
生产者/消费者模式其实是一种很经典的线程同步模型,很多时候,并不是光保证多个线程对某共享资源操作的互斥性就够了,往往多个线程之间都是有协作的。
假设有这样一种情况,有一个桌子,桌子上面有一个盘子,盘子里只能放一颗鸡蛋,A专门往盘子里放鸡蛋,如果盘子里有鸡蛋,则一直等到盘子里没鸡蛋,B专门从盘子里拿鸡蛋,如果盘子里没鸡蛋,则等待直到盘子里有鸡蛋。其实盘子就是一个互斥区,每次往盘子放鸡蛋应该都是互斥的,A的等待其实就是主动放弃锁,B等待时还要提醒A放鸡蛋。
如何让线程主动释放锁
很简单,调用锁的wait()方法就好。wait方法是从Object来的,所以任意对象都有这个方法。看这个代码片段:
Java代码
Object lock=new Object();//声明了一个对象作为锁
synchronized (lock) {
balance = balance - num;
//这里放弃了同步锁,好不容易得到,又放弃了
lock.wait();
}
Object lock=new Object();//声明了一个对象作为锁
synchronized (lock) {
balance = balance - num;
//这里放弃了同步锁,好不容易得到,又放弃了
lock.wait();
}
如果一个线程获得了锁lock,进入了同步块,执行lock.wait(),那么这个线程会进入到lock的阻塞队列。如果调用lock.notify()则会通知阻塞队列的某个线程进入就绪队列。
声明一个盘子,只能放一个鸡蛋
Java代码
package com.jameswxx.synctest;
public class Plate{
List<Object> eggs=new ArrayList<Object>();
public synchronized Object getEgg(){
if(eggs.size()==0){
try{
wait();
}catch(InterruptedException e){
}
}
Object egg=eggs.get(0);
eggs.clear();//清空盘子
notify();//唤醒阻塞队列的某线程到就绪队列
return egg;
}
public synchronized void putEgg(Object egg){
If(eggs.size()>0){
try{
wait();
}catch(InterruptedException e){
}
}
eggs.add(egg);//往盘子里放鸡蛋
notify();//唤醒阻塞队列的某线程到就绪队列
}
}
package com.jameswxx.synctest;
public class Plate{
List<Object> eggs=new ArrayList<Object>();
public synchronized Object getEgg(){
if(eggs.size()==0){
try{
wait();
}catch(InterruptedException e){
}
}
Object egg=eggs.get(0);
eggs.clear();//清空盘子
notify();//唤醒阻塞队列的某线程到就绪队列
return egg;
}
public synchronized void putEgg(Object egg){
If(eggs.size()>0){
try{
wait();
}catch(InterruptedException e){
}
}
eggs.add(egg);//往盘子里放鸡蛋
notify();//唤醒阻塞队列的某线程到就绪队列
}
}
声明一个Plate对象为plate,被线程A和线程B共享,A专门放鸡蛋,B专门拿鸡蛋。假设
1 开始,A调用plate.putEgg方法,此时eggs.size()为0,因此顺利将鸡蛋放到盘子,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列还没有线程。
2 又有一个A线程对象调用plate.putEgg方法,此时eggs.size()不为0,调用wait()方法,自己进入了锁对象的阻塞队列。
3 此时,来了一个B线程对象,调用plate.getEgg方法,eggs.size()不为0,顺利的拿到了一个鸡蛋,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列有一个A线程对象,唤醒后,它进入到就绪队列,就绪队列也就它一个,因此马上得到锁,开始往盘子里放鸡蛋,此时盘子是空的,因此放鸡蛋成功。
4 假设接着来了线程A,就重复2;假设来料线程B,就重复3。
整个过程都保证了放鸡蛋,拿鸡蛋,放鸡蛋,拿鸡蛋。
volatile关键字
volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。什么意思呢?假如有这样的代码:
Java代码
public class VolatileTest{
public volatile int a;
public void add(int count){
a=a+count;
}
}
public class VolatileTest{
public volatile int a;
public void add(int count){
a=a+count;
}
}
当一个VolatileTest对象被多个线程共享,a的值不一定是正确的,因为a=a+count包含了好几步操作,而此时多个线程的执行是无序的,因为没有任何机制来保证多个线程的执行有序性和原子性。volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
1)对变量的写操作不依赖于当前值。
2)该变量没有包含在具有其他变量的不变式中
volatile只保证了可见性,所以Volatile适合直接赋值的场景,如
Java代码
public class VolatileTest{
public volatile int a;
public void setA(int a){
this.a=a;
}
}
public class VolatileTest{
public volatile int a;
public void setA(int a){
this.a=a;
}
}
在没有volatile声明时,多线程环境下,a的最终值不一定是正确的,因为this.a=a;涉及到给a赋值和将a同步回主存的步骤,这个顺序可能被打乱。如果用volatile声明了,读取主存副本到工作内存和同步a到主存的步骤,相当于是一个原子操作。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这是一种很简单的同步场景,这时候使用volatile的开销将会非常小。
不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要清楚在jvm内存模型的基础上,如果解决多线程的可见性和有序性。
那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下:
(1) 从主存复制变量到当前工作内存 (read and load)
(2) 执行代码,改变共享变量值 (use and assign)
(3) 用工作内存数据刷新主存相关内容 (store and write)
JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。
那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本(use),也就是说 read,load,use顺序可以由JVM实现系统决定。
线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如:
Java代码
for(int i=0;i<10;i++)
a++;
for(int i=0;i<10;i++)
a++;
线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x加1
3 将x加1后的值写回主 存
如果另外一个线程b执行x=x-1,执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x减1
3 将x减1后的值写回主存
那么显然,最终的x的值是不可靠的。假设x现在为10,线程a加1,线程b减1,从表面上看,似乎最终x还是为10,但是多线程情况下会有这种情况发生:
1:线程a从主存读取x副本到工作内存,工作内存中x值为10
2:线程b从主存读取x副本到工作内存,工作内存中x值为10
3:线程a将工作内存中x加1,工作内存中x值为11
4:线程a将x提交主存中,主存中x为11
5:线程b将工作内存中x值减1,工作内存中x值为9
6:线程b将x提交到中主存中,主存中x为9
同样,x有可能为11,如果x是一个银行账户,线程a存款,线程b扣款,显然这样是有严重问题的,要解决这个问题,必须保证线程a和线程b是有序执行的,并且每个线程执行的加1或减1是一个原子操作。看看下面代码:
Java代码
public class Account {
private int balance;
public Account(int balance) {
this.balance = balance;
}
public int getBalance() {
return balance;
}
public void add(int num) {
balance = balance + num;
}
public void withdraw(int num) {
balance = balance - num;
}
public static void main(String[] args) throws InterruptedException {
Account account = new Account(1000);
Thread a = new Thread(new AddThread(account, 20), "add");
Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");
a.start();
b.start();
a.join();
b.join();
System.out.println(account.getBalance());
}
static class AddThread implements Runnable {
Account account;
int amount;
public AddThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 200000; i++) {
account.add(amount);
}
}
}
static class WithdrawThread implements Runnable {
Account account;
int amount;
public WithdrawThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 100000; i++) {
account.withdraw(amount);
}
}
}
}
public class Account {
private int balance;
public Account(int balance) {
this.balance = balance;
}
public int getBalance() {
return balance;
}
public void add(int num) {
balance = balance + num;
}
public void withdraw(int num) {
balance = balance - num;
}
public static void main(String[] args) throws InterruptedException {
Account account = new Account(1000);
Thread a = new Thread(new AddThread(account, 20), "add");
Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");
a.start();
b.start();
a.join();
b.join();
System.out.println(account.getBalance());
}
static class AddThread implements Runnable {
Account account;
int amount;
public AddThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 200000; i++) {
account.add(amount);
}
}
}
static class WithdrawThread implements Runnable {
Account account;
int amount;
public WithdrawThread(Account account, int amount) {
this.account = account;
this.amount = amount;
}
public void run() {
for (int i = 0; i < 100000; i++) {
account.withdraw(amount);
}
}
}
}
第一次执行结果为10200,第二次执行结果为1060,每次执行的结果都是不确定的,因为线程的执行顺序是不可预见的。这是java同步产生的根源,synchronized关键字保证了多个线程对于同步块是互斥的,synchronized作为一种同步手段,解决java多线程的执行有序性和内存可见性,而volatile关键字之解决多线程的内存可见性问题。后面将会详细介绍。
synchronized关键字
上面说了,java用synchronized关键字做为多线程并发环境的执行有序性的保证手段之一。当一段代码会修改共享变量,这一段代码成为互斥区或临界区,为了保证共享变量的正确性,synchronized标示了临界区。典型的用法如下:
Java代码
synchronized(锁){
临界区代码
}
synchronized(锁){
临界区代码
}
为了保证银行账户的安全,可以操作账户的方法如下:
Java代码
public synchronized void add(int num) {
balance = balance + num;
}
public synchronized void withdraw(int num) {
balance = balance - num;
}
public synchronized void add(int num) {
balance = balance + num;
}
public synchronized void withdraw(int num) {
balance = balance - num;
}
刚才不是说了synchronized的用法是这样的吗:
Java代码
synchronized(锁){
临界区代码
}
synchronized(锁){
临界区代码
}
那么对于public synchronized void add(int num)这种情况,意味着什么呢?其实这种情况,锁就是这个方法所在的对象。同理,如果方法是public static synchronized void add(int num),那么锁就是这个方法所在的class。
理论上,每个对象都可以做为锁,但一个对象做为锁时,应该被多个线程共享,这样才显得有意义,在并发环境下,一个没有共享的对象作为锁是没有意义的。假如有这样的代码:
Java代码
public class ThreadTest{
public void test(){
Object lock=new Object();
synchronized (lock){
//do something
}
}
}
public class ThreadTest{
public void test(){
Object lock=new Object();
synchronized (lock){
//do something
}
}
}
lock变量作为一个锁存在根本没有意义,因为它根本不是共享对象,每个线程进来都会执行Object lock=new Object();每个线程都有自己的lock,根本不存在锁竞争。
每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个被线程被唤醒(notify)后,才会进入到就绪队列,等待cpu的调度。当一开始线程a第一次执行account.add方法时,jvm会检查锁对象account的就绪队列是否已经有线程在等待,如果有则表明account的锁已经被占用了,由于是第一次运行,account的就绪队列为空,所以线程a获得了锁,执行account.add方法。如果恰好在这个时候,线程b要执行account.withdraw方法,因为线程a已经获得了锁还没有释放,所以线程b要进入account的就绪队列,等到得到锁后才可以执行。
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
生产者/消费者模式
生产者/消费者模式其实是一种很经典的线程同步模型,很多时候,并不是光保证多个线程对某共享资源操作的互斥性就够了,往往多个线程之间都是有协作的。
假设有这样一种情况,有一个桌子,桌子上面有一个盘子,盘子里只能放一颗鸡蛋,A专门往盘子里放鸡蛋,如果盘子里有鸡蛋,则一直等到盘子里没鸡蛋,B专门从盘子里拿鸡蛋,如果盘子里没鸡蛋,则等待直到盘子里有鸡蛋。其实盘子就是一个互斥区,每次往盘子放鸡蛋应该都是互斥的,A的等待其实就是主动放弃锁,B等待时还要提醒A放鸡蛋。
如何让线程主动释放锁
很简单,调用锁的wait()方法就好。wait方法是从Object来的,所以任意对象都有这个方法。看这个代码片段:
Java代码
Object lock=new Object();//声明了一个对象作为锁
synchronized (lock) {
balance = balance - num;
//这里放弃了同步锁,好不容易得到,又放弃了
lock.wait();
}
Object lock=new Object();//声明了一个对象作为锁
synchronized (lock) {
balance = balance - num;
//这里放弃了同步锁,好不容易得到,又放弃了
lock.wait();
}
如果一个线程获得了锁lock,进入了同步块,执行lock.wait(),那么这个线程会进入到lock的阻塞队列。如果调用lock.notify()则会通知阻塞队列的某个线程进入就绪队列。
声明一个盘子,只能放一个鸡蛋
Java代码
package com.jameswxx.synctest;
public class Plate{
List<Object> eggs=new ArrayList<Object>();
public synchronized Object getEgg(){
if(eggs.size()==0){
try{
wait();
}catch(InterruptedException e){
}
}
Object egg=eggs.get(0);
eggs.clear();//清空盘子
notify();//唤醒阻塞队列的某线程到就绪队列
return egg;
}
public synchronized void putEgg(Object egg){
If(eggs.size()>0){
try{
wait();
}catch(InterruptedException e){
}
}
eggs.add(egg);//往盘子里放鸡蛋
notify();//唤醒阻塞队列的某线程到就绪队列
}
}
package com.jameswxx.synctest;
public class Plate{
List<Object> eggs=new ArrayList<Object>();
public synchronized Object getEgg(){
if(eggs.size()==0){
try{
wait();
}catch(InterruptedException e){
}
}
Object egg=eggs.get(0);
eggs.clear();//清空盘子
notify();//唤醒阻塞队列的某线程到就绪队列
return egg;
}
public synchronized void putEgg(Object egg){
If(eggs.size()>0){
try{
wait();
}catch(InterruptedException e){
}
}
eggs.add(egg);//往盘子里放鸡蛋
notify();//唤醒阻塞队列的某线程到就绪队列
}
}
声明一个Plate对象为plate,被线程A和线程B共享,A专门放鸡蛋,B专门拿鸡蛋。假设
1 开始,A调用plate.putEgg方法,此时eggs.size()为0,因此顺利将鸡蛋放到盘子,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列还没有线程。
2 又有一个A线程对象调用plate.putEgg方法,此时eggs.size()不为0,调用wait()方法,自己进入了锁对象的阻塞队列。
3 此时,来了一个B线程对象,调用plate.getEgg方法,eggs.size()不为0,顺利的拿到了一个鸡蛋,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列有一个A线程对象,唤醒后,它进入到就绪队列,就绪队列也就它一个,因此马上得到锁,开始往盘子里放鸡蛋,此时盘子是空的,因此放鸡蛋成功。
4 假设接着来了线程A,就重复2;假设来料线程B,就重复3。
整个过程都保证了放鸡蛋,拿鸡蛋,放鸡蛋,拿鸡蛋。
volatile关键字
volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。什么意思呢?假如有这样的代码:
Java代码
public class VolatileTest{
public volatile int a;
public void add(int count){
a=a+count;
}
}
public class VolatileTest{
public volatile int a;
public void add(int count){
a=a+count;
}
}
当一个VolatileTest对象被多个线程共享,a的值不一定是正确的,因为a=a+count包含了好几步操作,而此时多个线程的执行是无序的,因为没有任何机制来保证多个线程的执行有序性和原子性。volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
1)对变量的写操作不依赖于当前值。
2)该变量没有包含在具有其他变量的不变式中
volatile只保证了可见性,所以Volatile适合直接赋值的场景,如
Java代码
public class VolatileTest{
public volatile int a;
public void setA(int a){
this.a=a;
}
}
public class VolatileTest{
public volatile int a;
public void setA(int a){
this.a=a;
}
}
在没有volatile声明时,多线程环境下,a的最终值不一定是正确的,因为this.a=a;涉及到给a赋值和将a同步回主存的步骤,这个顺序可能被打乱。如果用volatile声明了,读取主存副本到工作内存和同步a到主存的步骤,相当于是一个原子操作。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这是一种很简单的同步场景,这时候使用volatile的开销将会非常小。
相关推荐
Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java多线程学习Java...
在学习Java多线程的过程中,理解线程与进程的概念是非常基础且重要的一步。首先,进程是一个程序的执行实例,是操作系统资源分配的基本单位,具有独立的地址空间和运行状态。每个进程至少包含一个线程,我们称之为...
### Java多线程学习资料知识点解析 #### 一、引言 Java作为一种广泛使用的编程语言,在并发编程领域具有独特的优势。多线程是Java中实现并发处理的核心技术之一,能够显著提升程序的性能和响应性。本文将深入探讨...
Java多线程学习是编程领域中的重要一环,特别是在服务器端和网络编程中,多线程技术能够有效地利用系统资源,提高程序的并发性。FTP(File Transfer Protocol)上传则是通过网络将本地文件传输到远程服务器的过程。...
总的来说,Java多线程学习涵盖了线程的创建、同步、通信、调度以及异常处理等多个方面,深入理解和掌握这些知识点对于提升Java程序的性能和复杂性至关重要。通过阅读提供的"Java多线程.pdf"文档,你可以进一步了解和...
Java多线程是一块重要的内容,李兴华讲解的Java是一个很好的资源
这篇学习笔记将深入探讨Java多线程的核心概念、实现方式以及相关工具的使用。 一、多线程基础 1. 线程与进程:在操作系统中,进程是资源分配的基本单位,而线程是程序执行的基本单位。每个进程至少有一个主线程,...
Java多线程是Java编程中的重要概念,尤其在如今的多核处理器环境下,理解并熟练掌握多线程技术对于提高程序性能和响应速度至关重要...通过对这些知识点的学习和实践,读者可以深入理解Java多线程的运用,提升编程技能。
《深入学习:Java多线程编程》是一本专注于Java并发技术的专业书籍,旨在帮助开发者深入理解和熟练运用Java中的多线程编程。Java多线程是Java编程中的核心部分,尤其在现代高性能应用和分布式系统中不可或缺。理解并...
学习《汪文君JAVA多线程编程实战》不仅能够提高读者对Java多线程编程的理解,还有助于培养良好的并发编程习惯,避免常见的并发陷阱。对于想要提升自己在并发编程领域技能的Java开发者来说,这本书无疑是一份宝贵的...
在Java编程中,多线程并发是提升程序执行效率、充分利用多核处理器资源的重要手段。本文将基于"java 多线程并发实例"这个主题,深入探讨Java中的多...通过不断学习和实践,我们可以编写出高效、安全的多线程并发程序。
《JAVA多线程教学演示系统》是一篇深入探讨JAVA多线程编程的论文,它针对教育领域中的教学需求,提供了一种生动、直观的演示方式,帮助学生更好地理解和掌握多线程技术。这篇论文的核心内容可能包括以下几个方面: ...
这份“JAVA多线程编程技术PDF”是学习和掌握这一领域的经典资料,涵盖了多线程的全部知识点。 首先,多线程的核心概念包括线程的创建与启动。在Java中,可以通过实现Runnable接口或继承Thread类来创建线程。创建后...
Java多线程编程是Java开发中的...以上内容只是《Java多线程编程核心技术》教程中的一部分核心知识点,实际学习中还需要结合具体示例和实践来深入理解和掌握。通过学习,开发者可以编写出高效、稳定的多线程Java程序。
1. **线程基础**:书中首先会介绍Java多线程的基础知识,包括线程的创建方式(如通过`Thread`类或实现`Runnable`接口)、线程的生命周期(新建、就绪、运行、阻塞和死亡),以及如何启动和停止线程。 2. **线程同步...
这份"Java多线程编程核心技术学习资料"正是针对这一主题提供的一份宝贵的学习资源,适合初、中级Java开发人员提升自己的多线程编程技能。 在Java中,多线程主要通过以下方式实现: 1. 继承Thread类:创建一个新的...
通过学习《Java多线程编程实战指南》,开发者不仅可以理解多线程的基本概念,还能掌握如何在实际项目中运用多线程技术,提升程序的并发性能和稳定性。无论是初级开发者还是经验丰富的工程师,这本书都是一本值得阅读...
Java多线程技术是Java编程中的重要组成部分,它允许程序同时执行多个任务,...在实际开发中,结合《Java多线程编程核心技术_完整版 带书签目录.pdf》这样的学习资料,辅以实践,将有助于你更好地驾驭Java多线程的世界。
下面是对Java多线程学习的详细解析。 1. **多线程概述**: 多线程是指一个程序内可以同时执行多个独立的执行流,每个执行流被称为一个线程。Java通过Thread类来代表线程,每个线程都有自己的生命周期,包括新建、...