- 浏览: 806432 次
- 性别:
- 来自: 杭州
文章分类
最新评论
-
huan19900606:
像haskell这些脚本语言很容易定义DSL,实现对应的词法语 ...
DSL的基本介绍(groovy来进行构建) -
express_wind:
https://yq.aliyun.com/album/130 ...
qlexpress规则引擎初探 -
readxuxuegang:
博主你好。如果groovy的代码是保存在数据库里,不是文件,这 ...
在java中使用groovy怎么搞 (java and groovy) -
express_wind:
hi,兄弟,有没有兴趣来阿里巴巴专门做这方面的研究,https ...
qlexpress规则引擎初探 -
langcaiye:
有2个问题请教:1. 这里的base32算法为什么需要以负数的 ...
【原】geohash算法详解
最近测试环境总是报OOM的异常,正好赶上毕玄的JVM培训,于是花了一天的时间去参加培训,培训后,对于JVM内存的管理有了初步的印象,最起码不那么疑惑了,之后又找了两本书细化的看了一下,现在总结记录下来。
(1)JVM内存区域框图
程序计数器:是一块较小的内存空间,作用可以看做是当前线程所执行的字节码的行号的指示器,线程私有。
JVM方法栈和本地方法栈:在sun的jdk中,JVM方法栈和本地方法栈是算在一起的,虚拟机栈为虚拟机执行java方法,本地方法栈为虚拟机执行Native方法,线程私有。
java heap:是虚拟机中内存区域最大的一块,细分可以分为新生代和旧生带,新生代可以划分为E、S0、S1,其中S1和S0又可以叫做from 或 to,线程共享。
方法区:存放了要加载的类的信息,类中的静态变量,定义为final的常量,类中的Field信息,方法信息等,全局共享,又叫做持久带,可以通过 -XX:PermSize和-XX:MaxPermSize设置最小值和最大值,线程共享。
(2)JVM各个区域的作用
新生代:
大多数情况下,java中新建的对象都是在新生代上分配的,新生代由Eden和两块相同大小的S0和S1组成,其中S0和S1又称为From和To(这个划分没有先后顺序),可以通过-Xmn来设置新生代的大小,-XX:SurvivorRatio设置Eden和S区的比值,有些垃圾回收器会对S0或者S1进行动态的调整。
之所以说大多数情况下新建的对象在新生代上分配,是因为有两种情况下java新创建的对象会直接到旧生带,一种是大的数组对象,且对象中无外部引用的对象,另外一种是通过
启动参数上面进行设置-XX:PretenureSizeThreshold=1024(单位是字节),意思是对象超过此大小,就直接分配到旧生带生面。此外,并行垃圾回收器可以在运行期决定那些对象可以直接创建在旧生带。
旧生带:
多次回收之后仍然存活的对象,大小是-Xms减去-Xmn。
(3)常见的启动参数解释
1、-Xms2g -Xmx2g -Xmn1g -XX:PermSize=64m -XX:MaxPermSize=128m
新生代分配1G,java heap最小2G,最大2G,持久带最小64M,最大128M
2、 -XX:SurvivorRatio=8
新生代中Eden和S0的比值是8,对应上面配置,Eden大小是1024*0.8M,S0和S1分别是1024*0.1M
3、-XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:+CMSClassUnloadingEnabled
垃圾回收器使用CMS并发收集器,同时开启对旧生带的压缩,对于持久带区域也进行回收
4、-XX:CMSMaxAbortablePrecleanTime=5000 -XX:CMSInitiatingOccupancyFraction=80
对于采用CMS进行旧生代GC的程序而言,尤其要注意GC日志中是否有promotion failed和concurrent mode failure两种状况,当这两种状况出现时可能会触发Full GC。promotion failed是在进行Minor GC时,survivor space放不下、对象只能放入旧生代,而此时旧生代也放不下造成的;concurrent mode failure是在执行CMS GC的过程中同时有对象要放入旧生代,而此时旧生代空间不足造成的。应对措施为:增大survivor space、旧生代空间或调低触发并发GC的比率,但在JDK 5.0+、6.0+的版本中有可能会由于JDK的bug29导致CMS在remark完毕后很久才触发sweeping动作。对于这种状况,可通过设置-XX: CMSMaxAbortablePrecleanTime=5(单位为ms)来避免。
使用cms作为垃圾回收,使用80%后开始CMS收集。
5、 -XX:+UseCompressedOops
64为操作系统开启指针压缩功能。
6、-XX:+DisableExplicitGC
关闭System.gc()
7、 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/home/java/logs
在JVM报OOM错误的时候自动dump内存文件,dump后的文件存储在/home/java/logs中,用于后续分析内存
8、 -verbose:gc -Xloggc:/home/java/logs/gc.log -XX:+PrintGCDetails -XX:+PrintGCDateStamps
在JVM中java程序运行过程中,打印gc的日志,文件存储在:/home/java/logs/gc.log 中,可以观察历史GC情况
9、 -Djava.awt.headless=true
Headless模式是系统的一种配置模式。在该模式下,系统缺少了显示设备、键盘或鼠标。
Headless模式虽然不是我们愿意见到的,但事实上我们却常常需要在该模式下工作,尤其是服务器端程序开发者。因为服务器(如提供Web服务的主机)往往可能缺少前述设备,但又需要使用他们提供的功能,生成相应的数据,以提供给客户端(如浏览器所在的配有相关的显示设备、键盘和鼠标的主机)。
一般是在程序开始激活headless模式,告诉程序,现在你要工作在Headless mode下,就不要指望硬件帮忙了,你得自力更生,依靠系统的计算能力模拟出这些特性来 。
在Java服务器程序需要进行部分图像处理功能时,建议将程序运行模式设置为headless,这样有助于服务器端有效控制程序运行状态和内存使用(可防止在处理大图片时发生内存溢出) 。
10、-Dsun.net.client.defaultConnectTimeout=10000
连接主机的超时时间(单位:毫秒)
11、 -Dsun.net.client.defaultReadTimeout=30000
从主机读取数据的超时时间
(4)常见错误情况
1、旧生代空间只有在新生代对象转入及创建为大对象、大数组时才会出现不足的现象,当执行Full GC后空间仍然不足,则抛出如下错误:
java.lang.OutOfMemoryError: Java heap space
2、Permanet Generation中存放的为一些class的信息等,当系统中要加载的类、反射的类和调用的方法较多时,Permanet Generation可能会被占满,在未配置为采用CMS GC的情况下会执行Full GC。如果经过Full GC仍然回收不了,那么JVM会抛出如下错误信息:
java.lang.OutOfMemoryError: PermGen space
为避免Perm Gen占满造成Full GC现象,可采用的方法为增大Perm Gen空间或转为使用CMS GC。
3、CMS GC时出现promotion failed和concurrent mode failure
在gc日志中含有这些信息,处理详见参数-XX:CMSMaxAbortablePrecleanTime=5000
4、线程请求的栈深度大于虚拟机所允许的最大深度
抛出StackOverflowError的错误
大体对于JVM内存管理有了一个了解,后续碰到相关的问题后再进行更加深入的了解。
=================================================================
在网上看见一篇介绍jvm启动参数的文章,搞下来呵呵
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Options 编写的译文。主要介绍JVM中的非稳态选项及其使用说明。
为了让读者明白每个选项的含义,作者在原文基础上补充了大量的资料。希望这份文档,对正在研究JVM参数的朋友有帮助!
另外,考虑到本文档是初稿,如有描述错误,敬请指正。
非稳态选项使用说明
-XX:+<option> 启用选项
-XX:-<option> 不启用选项
-XX:<option>=<number> 给选项设置一个数字类型值,可跟单位,例如 32k, 1024m, 2g
-XX:<option>=<string> 给选项设置一个字符串值,例如-XX:HeapDumpPath=./dump.core
行为选项
选项
默认值与限制
描述
-XX:-AllowUserSignalHandlers
限于Linux和Solaris,默认不启用
允许为java进程安装信号处理器。
Java信号处理相关知识,详见 http://kenwublog.com/java-asynchronous-notify-based-on-signal
-XX:-DisableExplicitGC
默认不启用
禁止在运行期显式地调用 System.gc()。
开启该选项后,GC的触发时机将由Garbage Collector全权掌控。
注意:你熟悉的代码里没调用System.gc(),不代表你依赖的框架工具没在使用。
例如RMI就在多数用户毫不知情的情况下,显示地调用GC来防止自身OOM。
请仔细权衡禁用带来的影响。
-XX:-RelaxAccessControlCheck
默认不启用
在Class校验器中,放松对访问控制的检查。
作用与reflection里的setAccessible类似。
-XX:-UseConcMarkSweepGC
默认不启用
启用CMS低停顿垃圾收集器。
资料详见:http://kenwublog.com/docs/CMS_GC.pdf
-XX:-UseParallelGC
-server时启用
其他情况下,默认不启用
策略为新生代使用并行清除,年老代使用单线程Mark-Sweep-Compact的垃圾收集器。
-XX:-UseParallelOldGC
默认不启用
策略为老年代和新生代都使用并行清除的垃圾收集器。
-XX:-UseSerialGC
-client时启用
其他情况下,默认不启用
使用串行垃圾收集器。
-XX:+UseSplitVerifier
java5默认不启用
java6默认启用
使用新的Class类型校验器 。
新Class类型校验器有什么特点?
新Class类型校验器,将老的校验步骤拆分成了两步:
1,类型推断。
2,类型校验。
新类型校验器通过在javac编译时嵌入类型信息到bytecode中,省略了类型推断这一步,从而提升了classloader的性能。
Classload顺序(供参考)
load -> verify -> prepare -> resove -> init
关联选项:
-XX:+FailOverToOldVerifier
-XX:+FailOverToOldVerifier
Java6新引入选项,默认启用
如果新的Class校验器检查失败,则使用老的校验器。
为什么会失败?
因为JDK6最高向下兼容到JDK1.2,而JDK1.2的class info 与JDK6的info存在较大的差异,所以新校验器可能会出现校验失败的情况。
关联选项:
-XX:+UseSplitVerifier
-XX:+HandlePromotionFailure
java5以前是默认不启用,java6默认启用
关闭新生代收集担保。
什么是新生代收集担保?
在一次理想化的minor gc中,Eden和First Survivor中的活跃对象会被复制到Second Survivor。
然而,Second Survivor不一定能容纳下所有从E和F区copy过来的活跃对象。
为了确保minor gc能够顺利完成,GC需要在年老代中额外保留一块足以容纳所有活跃对象的内存空间。
这个预留操作,就被称之为新生代收集担保(New Generation Guarantee)。如果预留操作无法完成时,仍会触发major gc(full gc)。
为什么要关闭新生代收集担保?
因为在年老代中预留的空间大小,是无法精确计算的。
为了确保极端情况的发生,GC参考了最坏情况下的新生代内存占用,即Eden+First Survivor。
这种策略无疑是在浪费年老代内存,从时序角度看,还会提前触发Full GC。
为了避免如上情况的发生,JVM允许开发者手动关闭新生代收集担保。
在开启本选项后,minor gc将不再提供新生代收集担保,而是在出现survior或年老代不够用时,抛出promotion failed异常。
-XX:+UseSpinning
java1.4.2和1.5需要手动启用, java6默认已启用
启用多线程自旋锁优化。
自旋锁优化原理
大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意。
原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖操作系统互斥(mutex)来实现的。
互斥是一种会导致线程挂起,并在较短的时间内又必须重新调度回原线程的,较为消耗资源的操作。
为了避免进入OS互斥,Java6的开发者们提出了自旋锁优化。
自旋锁优化的原理是在线程进入OS互斥前,通过CAS自旋一定的次数来检测锁的释放。
如果在自旋次数未达到预设值前锁已被释放,则当前线程会立即持有该锁。
CAS检测锁的原理详见: http://kenwublog.com/theory-of-lightweight-locking-upon-cas
关联选项:
-XX:PreBlockSpin=10
-XX:PreBlockSpin=10
-XX:+UseSpinning 必须先启用,对于java6来说已经默认启用了,这里默认自旋10次
控制多线程自旋锁优化的自旋次数。(什么是自旋锁优化?见 -XX:+UseSpinning 处的描述)
关联选项:
-XX:+UseSpinning
-XX:+ScavengeBeforeFullGC
默认启用
在Full GC前触发一次Minor GC。
-XX:+UseGCOverheadLimit
默认启用
限制GC的运行时间。如果GC耗时过长,就抛OOM。
-XX:+UseTLAB
1.4.2以前和使用-client选项时,默认不启用,其余版本默认启用
启用线程本地缓存区(Thread Local)。
-XX:+UseThreadPriorities
默认启用
使用本地线程的优先级。
-XX:+UseAltSigs
限于Solaris,默认启用
为了防止与其他发送信号的应用程序冲突,允许使用候补信号替代 SIGUSR1和SIGUSR2。
-XX:+UseBoundThreads
限于Solaris, 默认启用
绑定所有的用户线程到内核线程。
减少线程进入饥饿状态(得不到任何cpu time)的次数。
-XX:+UseLWPSynchronization
限于solaris,默认启用
使用轻量级进程(内核线程)替换线程同步。
-XX:+MaxFDLimit
限于Solaris,默认启用
设置java进程可用文件描述符为操作系统允许的最大值。
-XX:+UseVMInterruptibleIO
限于solaris,默认启用
在solaris中,允许运行时中断线程 。
选项与默认值
默认值与限制
描述
-XX:+AggressiveOpts
JDK 5 update 6后引入,但需要手动启用。
JDK6默认启用。
启用JVM开发团队最新的调优成果。例如编译优化,偏向锁,并行年老代收集等。
-XX:CompileThreshold=10000
1000
通过JIT编译器,将方法编译成机器码的触发阀值,可以理解为调用方法的次数,例如调1000次,将方法编译为机器码。
-XX:LargePageSizeInBytes=4m
默认4m
amd64位:2m
设置堆内存的内存页大小。
调整内存页的方法和性能提升原理,详见 http://kenwublog.com/tune-large-page-for-jvm-optimization
-XX:MaxHeapFreeRatio=70
70
GC后,如果发现空闲堆内存占到整个预估堆内存的70%,则收缩堆内存预估最大值。
什么是预估堆内存?
预估堆内存是堆大小动态调控的重要选项之一。
堆内存预估最大值一定小于或等于固定最大值(-Xmx指定的数值)。
前者会根据使用情况动态增大或缩小,以提高GC回收的效率。
-XX:MaxNewSize=size
1.3.1 Sparc: 32m
1.3.1 x86: 2.5m
新生代占整个堆内存的最大值。
-XX:MaxPermSize=64m
5.0以后: 64 bit VMs会增大预设值的30%
1.4 amd64: 96m
1.3.1 -client: 32m
其他默认 64m
Perm(俗称方法区)占整个堆内存的最大值。
-XX:MinHeapFreeRatio=40
40
GC后,如果发现空闲堆内存占到整个预估堆内存的40%,则增大堆内存的预估最大值。此值不会超过固定最大值。
(什么是预估堆内存?见 -XX:MaxHeapFreeRatio 处的描述)
关联选项:
-XX:MaxHeapFreeRatio=70
-XX:NewRatio=2
Sparc -client: 8
x86 -server: 8
x86 -client: 12
-client: 4 (1.3)
8 (1.3.1+)
x86: 12
其他默认 2
新生代和年老代的堆内存占用比例。
例如2表示新生代占最大堆内存的1/2。即年老代和新生代平分堆的占用。
-XX:NewSize=2.125m
5.0以后: 64 bit Vms 会增大预设值的30%
x86: 1m
x86, 5.0以后: 640k
其他默认 2.125m
新生代预估堆内存占用的默认值。(什么是预估堆内存?见 -XX:MaxHeapFreeRatio 处的描述)
-XX:ReservedCodeCacheSize=32m
Solaris 64-bit, amd64, -server x86: 48m
1.5.0_06之前, Solaris 64-bit amd64: 1024m
其他默认 32m
设置代码缓存的最大值,编译时用。
-XX:SurvivorRatio=8
Solaris amd64: 6
Sparc in 1.3.1: 25
Solaris platforms 5.0以前: 32
其他默认 8
Eden与Survivor的占用比例。例如8表示,一个survivor区占用 1/8 的新生代内存,另外因为有2个survivor,
所以survivor总共是占用新生代内存的 2/8,Eden的占比则为 6/8。
-XX:TargetSurvivorRatio=50
50
实际使用的survivor空间大小占比。默认是50%,最高90%。
-XX:ThreadStackSize=512
Sparc: 512
Solaris x86: 320 (5.0以前 256)
Sparc 64 bit: 1024
Linux amd64: 1024 (5.0 以前 0)
其他默认 512.
线程堆栈大小
-XX:+UseBiasedLocking
JDK 5 update 6后引入,但需要手动启用。
JDK6默认启用。
启用偏向锁。
偏向锁原理详见 http://kenwublog.com/theory-of-java-biased-locking
-XX:+UseFastAccessorMethods
默认启用
优化原始类型的getter方法性能。
-XX:-UseISM
默认启用
启用solaris的ISM。
JDK 5 update 5后引入,但需要手动启用。
JDK6默认启用。
启用大内存分页。
调整内存页的方法和性能提升原理,详见http://kenwublog.com/tune-large-page-for-jvm-optimization
关联选项
-XX:LargePageSizeInBytes=4m
-XX:+UseMPSS
1.4.1 之前: 不启用
其余版本默认启用
启用solaris的MPSS,不能与ISM同时使用。
-XX:+StringCache
默认启用
启用字符串缓存。
-XX:AllocatePrefetchLines=1
1
与机器码指令预读相关的一个选项,资料比较少,本文档不做解释。有兴趣的朋友请自行阅读官方doc。
-XX:AllocatePrefetchStyle=1
1
与机器码指令预读相关的一个选项,资料比较少,本文档不做解释。有兴趣的朋友请自行阅读官方doc。
调试选项
选项与默认值
默认值与限制
描述
-XX:-CITime
1.4引入。
默认启用
打印JIT编译器编译耗时。
-XX:ErrorFile=./hs_err_pid<pid>.log
Java 6引入。
如果JVM crashed,将错误日志输出到指定文件路径。
-XX:-ExtendedDTraceProbes
Java6引入,限于solaris
默认不启用
启用dtrace诊断。
-XX:HeapDumpPath=./java_pid<pid>.hprof
默认是java进程启动位置,即user.dir
堆内存快照的存储文件路径。
什么是堆内存快照?
当java进程因OOM或crash被OS强制终止后,会生成一个hprof(Heap PROFling)格式的堆内存快照文件。该文件用于线下调试,诊断,查找问题。
文件名一般为
java_<pid>_<date>_<time>_heapDump.hprof
解析快照文件,可以使用 jhat, eclipse MAT,gdb等工具。
-XX:-HeapDumpOnOutOfMemoryError
1.4.2 update12 和 5.0 update 7 引入。
默认不启用
在OOM时,输出一个dump.core文件,记录当时的堆内存快照(什么是堆内存快照? 见 -XX:HeapDumpPath 处的描述)。
-XX:OnError="<cmd args>;<cmd args>"
1.4.2 update 9引入
当java每抛出一个ERROR时,运行指定命令行指令集。指令集是与OS环境相关的,在linux下多数是bash脚本,windows下是dos批处理。
-XX:OnOutOfMemoryError="<cmd args>;
<cmd args>"
1.4.2 update 12和java6时引入
当第一次发生OOM时,运行指定命令行指令集。指令集是与OS环境相关的,在linux下多数是bash脚本,windows下是dos批处理。
-XX:-PrintClassHistogram
默认不启用
在Windows下, 按ctrl-break或Linux下是执行kill -3(发送SIGQUIT信号)时,打印class柱状图。
Jmap –histo pid也实现了相同的功能。
详见 http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html
-XX:-PrintConcurrentLocks
默认不启用
在thread dump的同时,打印java.util.concurrent的锁状态。
Jstack –l pid 也同样实现了同样的功能。
详见 http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html
-XX:-PrintCommandLineFlags
5.0 引入,默认不启用
Java启动时,往stdout打印当前启用的非稳态jvm options。
例如:
-XX:+UseConcMarkSweepGC -XX:+HeapDumpOnOutOfMemoryError -XX:+DoEscapeAnalysis
-XX:-PrintCompilation
默认不启用
往stdout打印方法被JIT编译时的信息。
例如:
1 java.lang.String::charAt (33 bytes)
-XX:-PrintGC
默认不启用
开启GC日志打印。
打印格式例如:
[Full GC 131115K->7482K(1015808K), 0.1633180 secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。
详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump
-XX:-PrintGCDetails
1.4.0引入,默认不启用
打印GC回收的细节。
打印格式例如:
[Full GC (System) [Tenured: 0K->2394K(466048K), 0.0624140 secs] 30822K->2394K(518464K), [Perm : 10443K->10443K(16384K)], 0.0625410 secs] [Times: user=0.05 sys=0.01, real=0.06 secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。
详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump
-XX:-PrintGCTimeStamps
默认不启用
打印GC停顿耗时。
打印格式例如:
2.744: [Full GC (System) 2.744: [Tenured: 0K->2441K(466048K), 0.0598400 secs] 31754K->2441K(518464K), [Perm : 10717K->10717K(16384K)], 0.0599570 secs] [Times: user=0.06 sys=0.00, real=0.06
secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。
详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump
-XX:-PrintTenuringDistribution
默认不启用
打印对象的存活期限信息。
打印格式例如:
[GC
Desired survivor size 4653056 bytes, new threshold 32 (max 32)
- age 1: 2330640 bytes, 2330640 total
- age 2: 9520 bytes, 2340160 total
204009K->21850K(515200K), 0.1563482 secs]
Age1 2表示在第1和2次GC后存活的对象大小。
-XX:-TraceClassLoading
默认不启用
打印class装载信息到stdout。记Loaded状态。
例如:
[Loaded java.lang.Object from /opt/taobao/install/jdk1.6.0_07/jre/lib/rt.jar]
-XX:-TraceClassLoadingPreorder
1.4.2引入,默认不启用
按class的引用/依赖顺序打印类装载信息到stdout。不同于 TraceClassLoading,本选项只记 Loading状态。
例如:
[Loading java.lang.Object from /home/confsrv/jdk1.6.0_14/jre/lib/rt.jar]
-XX:-TraceClassResolution
1.4.2引入,默认不启用
打印所有静态类,常量的代码引用位置。用于debug。
例如:
RESOLVE java.util.HashMap java.util.HashMap$Entry HashMap.java:209
说明HashMap类的209行引用了静态类 java.util.HashMap$Entry
-XX:-TraceClassUnloading
默认不启用
打印class的卸载信息到stdout。记Unloaded状态。
Java6 引入,默认不启用
打印class的装载策略变化信息到stdout。
例如:
[Adding new constraint for name: java/lang/String, loader[0]: sun/misc/Launcher$ExtClassLoader, loader[1]: <bootloader> ]
[Setting class object in existing constraint for name: [Ljava/lang/Object; and loader sun/misc/Launcher$ExtClassLoader ]
[Updating constraint for name org/xml/sax/InputSource, loader <bootloader>, by setting class object ]
[Extending constraint for name java/lang/Object by adding loader[15]: sun/reflect/DelegatingClassLoader ]
装载策略变化是实现classloader隔离/名称空间一致性的关键技术。
对此感兴趣的朋友,详见http://kenwublog.com/docs/Dynamic+Class+Loading+in+the+Java+Virtual+Machine.pdf 中的 contraint rules一章。
-XX:+PerfSaveDataToFile
默认启用
当java进程因OOM或crashed被强制终止后,生成一个堆快照文件(什么是堆内存快照? 见 -XX:HeapDumpPath 处的描述)。
非稳态选项使用说明
-XX:+<option> 启用选项
-XX:-<option> 不启用选项
-XX:<option>=<number> 给选项设置一个数字类型值,可跟单位,例如 32k, 1024m, 2g
-XX:<option>=<string> 给选项设置一个字符串值,例如-XX:HeapDumpPath=./dump.core
行为选项
选项 |
默认值与限制 |
描述 |
-XX:-AllowUserSignalHandlers |
限于Linux和Solaris,默认不启用 |
允许为java进程安装信号处理器。
|
-XX:-DisableExplicitGC |
默认不启用 |
禁止在运行期显式地调用 System.gc()。
开启该选项后,GC的触发时机将由Garbage Collector全权掌控。 例如RMI就在多数用户毫不知情的情况下,显示地调用GC来防止自身OOM。 请仔细权衡禁用带来的影响。 |
-XX:-RelaxAccessControlCheck |
默认不启用 |
在Class校验器中,放松对访问控制的检查。
作用与reflection里的setAccessible类似。 |
-XX:-UseConcMarkSweepGC |
默认不启用 |
启用CMS低停顿垃圾收集器。
|
-XX:-UseParallelGC |
-server时启用 其他情况下,默认不启用 |
策略为新生代使用并行清除,年老代使用单线程Mark-Sweep-Compact的垃圾收集器。 |
-XX:-UseParallelOldGC |
默认不启用 |
策略为老年代和新生代都使用并行清除的垃圾收集器。 |
-XX:-UseSerialGC |
-client时启用 其他情况下,默认不启用 |
使用串行垃圾收集器。 |
-XX:+UseSplitVerifier |
java5默认不启用 java6默认启用 |
使用新的Class类型校验器 。
Classload顺序(供参考)
|
-XX:+FailOverToOldVerifier |
Java6新引入选项,默认启用 |
如果新的Class校验器检查失败,则使用老的校验器。
为什么会失败? 因为JDK6最高向下兼容到JDK1.2,而JDK1.2的class info 与JDK6的info存在较大的差异,所以新校验器可能会出现校验失败的情况。
|
-XX:+HandlePromotionFailure |
java5以前是默认不启用,java6默认启用 |
关闭新生代收集担保。
为了确保minor gc能够顺利完成,GC需要在年老代中额外保留一块足以容纳所有活跃对象的内存空间。 为了确保极端情况的发生,GC参考了最坏情况下的新生代内存占用,即Eden+First Survivor。 这种策略无疑是在浪费年老代内存,从时序角度看,还会提前触发Full GC。 为了避免如上情况的发生,JVM允许开发者手动关闭新生代收集担保。
在开启本选项后,minor gc将不再提供新生代收集担保,而是在出现survior或年老代不够用时,抛出promotion failed异常。 |
-XX:+UseSpinning |
java1.4.2和1.5需要手动启用, java6默认已启用 |
启用多线程自旋锁优化。
大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意。 为了避免进入OS互斥,Java6的开发者们提出了自旋锁优化。
自旋锁优化的原理是在线程进入OS互斥前,通过CAS自旋一定的次数来检测锁的释放。 如果在自旋次数未达到预设值前锁已被释放,则当前线程会立即持有该锁。
CAS检测锁的原理详见: http://kenwublog.com/theory-of-lightweight-locking-upon-cas
|
-XX:PreBlockSpin=10 |
-XX:+UseSpinning 必须先启用,对于java6来说已经默认启用了,这里默认自旋10次 |
控制多线程自旋锁优化的自旋次数。(什么是自旋锁优化?见 -XX:+UseSpinning 处的描述)
|
-XX:+ScavengeBeforeFullGC |
默认启用 |
在Full GC前触发一次Minor GC。 |
-XX:+UseGCOverheadLimit |
默认启用 |
限制GC的运行时间。如果GC耗时过长,就抛OOM。 |
-XX:+UseTLAB |
1.4.2以前和使用-client选项时,默认不启用,其余版本默认启用 |
启用线程本地缓存区(Thread Local)。 |
-XX:+UseThreadPriorities |
默认启用 |
使用本地线程的优先级。 |
-XX:+UseAltSigs |
限于Solaris,默认启用 |
为了防止与其他发送信号的应用程序冲突,允许使用候补信号替代 SIGUSR1和SIGUSR2。 |
-XX:+UseBoundThreads |
限于Solaris, 默认启用 |
绑定所有的用户线程到内核线程。 |
-XX:+UseLWPSynchronization |
限于solaris,默认启用 |
使用轻量级进程(内核线程)替换线程同步。 |
-XX:+MaxFDLimit |
限于Solaris,默认启用 |
设置java进程可用文件描述符为操作系统允许的最大值。 |
-XX:+UseVMInterruptibleIO |
限于solaris,默认启用 |
在solaris中,允许运行时中断线程 。 |
选项与默认值 |
默认值与限制 |
描述 |
-XX:+AggressiveOpts |
JDK 5 update 6后引入,但需要手动启用。 JDK6默认启用。 |
启用JVM开发团队最新的调优成果。例如编译优化,偏向锁,并行年老代收集等。 |
-XX:CompileThreshold=10000 |
1000 |
通过JIT编译器,将方法编译成机器码的触发阀值,可以理解为调用方法的次数,例如调1000次,将方法编译为机器码。 |
-XX:LargePageSizeInBytes=4m |
默认4m amd64位:2m |
设置堆内存的内存页大小。
调整内存页的方法和性能提升原理,详见 http://kenwublog.com/tune-large-page-for-jvm-optimization |
-XX:MaxHeapFreeRatio=70 |
70 |
GC后,如果发现空闲堆内存占到整个预估上限值的70%,则收缩预估上限值。
什么是预估上限值? JVM在启动时,会申请最大值(-Xmx指定的数值)的地址空间,但其中绝大部分空间不会被立即分配(virtual)。 它们会一直保留着,直到运行过程中,JVM发现实际占用接近已分配上限值时,才从virtual里再分配掉一部分内存。 这里提到的已分配上限值,也可以叫做预估上限值。
注意:预估上限值的大小一定小于或等于最大值。 |
-XX:MaxNewSize=size |
1.3.1 Sparc: 32m 1.3.1 x86: 2.5m |
新生代占整个堆内存的最大值。 |
-XX:MaxPermSize=64m |
5.0以后: 64 bit VMs会增大预设值的30% 1.4 amd64: 96m 1.3.1 -client: 32m
其他默认 64m |
Perm(俗称方法区)占整个堆内存的最大值。 |
-XX:MinHeapFreeRatio=40 |
40 |
GC后,如果发现空闲堆内存占到整个预估上限值的40%,则增大上限值。 (什么是预估上限值?见 -XX:MaxHeapFreeRatio 处的描述)
关联选项: -XX:MaxHeapFreeRatio=70 |
-XX:NewRatio=2 |
Sparc -client: 8 x86 -server: 8 x86 -client: 12 -client: 4 (1.3) 8 (1.3.1+) x86: 12
其他默认 2 |
新生代和年老代的堆内存占用比例。 例如2例如2表示新生代占年老代的1/2,占整个堆内存的1/3。 |
-XX:NewSize=2.125m |
5.0以后: 64 bit Vms会增大预设值的30% x86: 1m x86, 5.0以后: 640k
其他默认 2.125m |
新生代预估上限的默认值。(什么是预估上限值?见 -XX:MaxHeapFreeRatio 处的描述) |
-XX:ReservedCodeCacheSize=32m |
Solaris 64-bit, amd64, -server x86: 48m 1.5.0_06之前, Solaris 64-bit amd64: 1024m
其他默认 32m |
设置代码缓存的最大值,编译时用。 |
-XX:SurvivorRatio=8 |
Solaris amd64: 6 Sparc in 1.3.1: 25 Solaris platforms5.0以前: 32
其他默认 8 |
Eden与Survivor的占用比例。例如8表示,一个survivor区占用 1/8 的Eden内存,即1/10的新生代内存,为什么不是1/9? 因为我们的新生代有2个survivor,即S1和S22。所以survivor总共是占用新生代内存的 2/10,Eden与新生代的占比则为 8/10。 |
-XX:TargetSurvivorRatio=50 |
50 |
实际使用的survivor空间大小占比。默认是50%,最高90%。 |
-XX:ThreadStackSize=512 |
Sparc: 512 Solaris x86: 320(5.0以前 256) Sparc 64 bit: 1024 Linux amd64: 1024 (5.0 以前 0)
其他默认 512. |
线程堆栈大小 |
-XX:+UseBiasedLocking |
JDK 5 update 6后引入,但需要手动启用。 JDK6默认启用。 |
启用偏向锁。
|
-XX:+UseFastAccessorMethods |
默认启用 |
优化原始类型的getter方法性能。 |
-XX:-UseISM |
默认启用 |
启用solaris的ISM。
|
JDK 5 update 5后引入,但需要手动启用。 JDK6默认启用。 |
启用大内存分页。
调整内存页的方法和性能提升原理,详见http://kenwublog.com/tune-large-page-for-jvm-optimization
关联选项 -XX:LargePageSizeInBytes=4m |
|
-XX:+UseMPSS |
1.4.1 之前: 不启用 其余版本默认启用 |
启用solaris的MPSS,不能与ISM同时使用。 |
-XX:+StringCache |
默认启用 |
启用字符串缓存。 |
-XX:AllocatePrefetchLines=1 |
1 |
与机器码指令预读相关的一个选项,资料比较少,本文档不做解释。有兴趣的朋友请自行阅读官方doc。 |
-XX:AllocatePrefetchStyle=1 |
1 |
与机器码指令预读相关的一个选项,资料比较少,本文档不做解释。有兴趣的朋友请自行阅读官方doc。 |
调试选项
选项与默认值 |
默认值与限制 |
描述 |
-XX:-CITime |
1.4引入。 默认启用 |
打印JIT编译器编译耗时。 |
-XX:ErrorFile=./hs_err_pid<pid>.log |
Java 6引入。 |
如果JVM crashed,将错误日志输出到指定文件路径。 |
-XX:-ExtendedDTraceProbes |
Java6引入,限于solaris 默认不启用 |
启用dtrace诊断。 |
-XX:HeapDumpPath=./java_pid<pid>.hprof |
默认是java进程启动位置,即user.dir |
堆内存快照的存储文件路径。
什么是堆内存快照? 当java进程因OOM或crash被OS强制终止后,会生成一个hprof(Heap PROFling)格式的堆内存快照文件。该文件用于线下调试,诊断,查找问题。 文件名一般为 java_<pid>_<date>_<time>_heapDump.hprof 解析快照文件,可以使用 jhat, eclipse MAT,gdb等工具。 |
-XX:-HeapDumpOnOutOfMemoryError |
1.4.2 update12 和 5.0 update 7 引入。 默认不启用 |
在OOM时,输出一个dump.core文件,记录当时的堆内存快照(什么是堆内存快照? 见 -XX:HeapDumpPath 处的描述)。 |
-XX:OnError="<cmd args>;<cmd args>" |
1.4.2 update 9引入 |
当java每抛出一个ERROR时,运行指定命令行指令集。指令集是与OS环境相关的,在linux下多数是bash脚本,windows下是dos批处理。 |
-XX:OnOutOfMemoryError="<cmd args>; |
1.4.2 update 12和java6时引入 |
当第一次发生OOM时,运行指定命令行指令集。指令集是与OS环境相关的,在linux下多数是bash脚本,windows下是dos批处理。 |
-XX:-PrintClassHistogram |
默认不启用 |
在Windows下, 按ctrl-break或Linux下是执行kill -3(发送SIGQUIT信号)时,打印class柱状图。
Jmap –histo pid也实现了相同的功能。 详见 http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html |
-XX:-PrintConcurrentLocks |
默认不启用 |
在thread dump的同时,打印java.util.concurrent的锁状态。
Jstack –l pid 也同样实现了同样的功能。 详见 http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html |
-XX:-PrintCommandLineFlags |
5.0 引入,默认不启用 |
Java启动时,往stdout打印当前启用的非稳态jvm options。
例如: -XX:+UseConcMarkSweepGC -XX:+HeapDumpOnOutOfMemoryError -XX:+DoEscapeAnalysis |
-XX:-PrintCompilation |
默认不启用 |
往stdout打印方法被JIT编译时的信息。
例如: 1 java.lang.String::charAt (33 bytes) |
-XX:-PrintGC |
默认不启用 |
开启GC日志打印。
打印格式例如: [Full GC 131115K->7482K(1015808K), 0.1633180 secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。 详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump |
-XX:-PrintGCDetails |
1.4.0引入,默认不启用 |
打印GC回收的细节。
打印格式例如: [Full GC (System) [Tenured: 0K->2394K(466048K), 0.0624140 secs] 30822K->2394K(518464K), [Perm : 10443K->10443K(16384K)], 0.0625410 secs] [Times: user=0.05 sys=0.01, real=0.06 secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。 详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump |
-XX:-PrintGCTimeStamps |
默认不启用 |
打印GC停顿耗时。
打印格式例如: 2.744: [Full GC (System) 2.744: [Tenured: 0K->2441K(466048K), 0.0598400 secs] 31754K->2441K(518464K), [Perm : 10717K->10717K(16384K)], 0.0599570 secs] [Times: user=0.06 sys=0.00, real=0.06 secs]
该选项可通过 com.sun.management.HotSpotDiagnosticMXBean API 和 Jconsole 动态启用。 详见 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/#Heap_Dump |
-XX:-PrintTenuringDistribution |
默认不启用 |
打印对象的存活期限信息。
打印格式例如: [GC 204009K->21850K(515200K), 0.1563482 secs]
Age1 2表示在第1和2次GC后存活的对象大小。 |
-XX:-TraceClassLoading |
默认不启用 |
打印class装载信息到stdout。记Loaded状态。
例如: [Loaded java.lang.Object from /opt/taobao/install/jdk1.6.0_07/jre/lib/rt.jar] |
-XX:-TraceClassLoadingPreorder |
1.4.2引入,默认不启用 |
按class的引用/依赖顺序打印类装载信息到stdout。不同于 TraceClassLoading,本选项只记 Loading状态。
例如: [Loading java.lang.Object from /home/confsrv/jdk1.6.0_14/jre/lib/rt.jar] |
-XX:-TraceClassResolution |
1.4.2引入,默认不启用 |
打印所有静态类,常量的代码引用位置。用于debug。
例如: RESOLVE java.util.HashMap java.util.HashMap$Entry HashMap.java:209
说明HashMap类的209行引用了静态类 java.util.HashMap$Entry |
-XX:-TraceClassUnloading |
默认不启用 |
打印class的卸载信息到stdout。记Unloaded状态。 |
Java6 引入,默认不启用 |
打印class的装载策略变化信息到stdout。
例如: [Adding new constraint for name: java/lang/String, loader[0]: sun/misc/Launcher$ExtClassLoader, loader[1]: <bootloader> ] [Setting class object in existing constraint for name: [Ljava/lang/Object; and loader sun/misc/Launcher$ExtClassLoader ] [Updating constraint for name org/xml/sax/InputSource, loader <bootloader>, by setting class object ] [Extending constraint for name java/lang/Object by adding loader[15]: sun/reflect/DelegatingClassLoader ]
装载策略变化是实现classloader隔离/名称空间一致性的关键技术。 对此感兴趣的朋友,详见 http://kenwublog.com/docs/Dynamic+Class+Loading+in+the+Java+Virtual+Machine.pdf 中的 contraint rules一章。 |
|
-XX:+PerfSaveDataToFile |
默认启用 |
当java进程因OOM或crashed被强制终止后,生成一个堆快照文件(什么是堆内存快照? 见 -XX:HeapDumpPath 处的描述)。 |
作者敬告
完善的单元测试,功能回归测试,和性能基准测试可以减少因调整非稳态JVM选项带来的风险。
参考资料
Java6性能调优白皮书
http://java.sun.com/performance/reference/whitepapers/6_performance.html
Java6 GC调优指南
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
更为全面的options列表
http://blogs.sun.com/watt/resource/jvm-options-list.html
发表评论
-
系统分布式情况下最终一致性方案梳理
2015-09-05 19:34 40959前言 目前的应用系 ... -
Storm核心概念剖析
2015-03-20 20:42 3227最近团队中有分析的场 ... -
池和流的两种数据处理方式
2014-11-19 22:59 1392在抽象层面,想了一下,目前很多的数据处理形式,一般分为池和流 ... -
关于CodeReview(java)
2014-10-29 20:42 1905关于codereview,在平时的开发中,经常忽略的环节,参 ... -
java中各种各样的数据结构
2014-07-13 20:26 2464在java中,有非常丰富的数据结构,可能是因为大多数的软件 ... -
关于JVM的ClassLoader(笔记)
2014-07-13 12:19 1873众所周知,java是编译型的语言,写的是java文 ... -
关于事务的几个概念介绍
2014-06-06 22:22 1942啥是事务? 有一组操 ... -
开发中遇到的编码问题
2014-05-22 19:39 18821、说到编码,最大的问题就是乱码了,为啥会有乱码呢 ? 因 ... -
ThreadLocal源代码解析
2014-04-24 17:54 2407最开始的时候,理解的ThreadLocal,我的理解是这样的 ... -
关于单例模式(代码篇)
2014-04-23 10:47 2418很早的时候,转发过一篇单例模式的文章:http://iamz ... -
今天遇到的两个spring相关的两个问题
2014-04-18 21:56 2559今天在项目中写代码,遇到两个Spring的问题,记录一下。再 ... -
Activiti中的命令模式解析
2014-04-11 13:10 3194最近在看Activiti的源代码,发现是基于命令模式进行的开 ... -
关于java中的本地缓存-总结概述
2014-03-31 19:00 18371java中的本地缓存,工作后陆续用到,一直想写,一直无从下 ... -
使用guava中的EventBus构建内存级别的事件引擎
2014-03-25 19:27 6407这个EventBus是guava中比较给力的一个类,从字面 ... -
DSL的基本介绍(groovy来进行构建)
2014-03-04 23:32 17053什么是DSL? 领域特定 ... -
qlexpress规则引擎初探
2014-02-25 22:28 25117qlexpress是啥? 这个是阿里内部的一个开源的jav ... -
在java中使用groovy怎么搞 (java and groovy)
2014-01-15 23:17 10960什么是groovy? 一种基于Java虚拟机的动态语言, ... -
java中记录方法调用时间,结果按照方法的层级树状的输出
2013-12-21 17:36 4684 在java中,最常用的埋点时间的方法就 ... -
一次CMS GC问题排查过程(理解原理+读懂GC日志)
2013-12-14 22:21 41348这个是之前处理过的一个线上问题,处理过程断断续续,经历了两 ... -
令牌桶算法和漏桶算法以及流量控制浅谈
2013-11-27 23:20 20794 在双十一等大促环节,系统需要限流,外部 ...
相关推荐
### Java内存泄露、溢出检查方法及工具详解 #### 一、引言 在实际的项目开发和运维过程中,经常会遇到Java应用程序出现内存溢出(`java.lang.OutOfMemoryError`)的情况。这类问题不仅影响应用程序的稳定性和性能...
本篇内容将深入探讨Java基础中的JVM初步使用,帮助你更好地理解Java程序在运行时的内部机制。 首先,我们需要了解JVM是什么。JVM是Java Virtual Machine的缩写,它是Java语言的一个关键组成部分,它是一个虚构的...
《JVM性能调优——JVM内存整理及GC回收》是针对Java开发人员的重要主题,尤其是在大型企业级应用中,确保JVM(Java虚拟机)的高效运行是至关重要的。本资料深入探讨了如何通过调整JVM内存设置和优化垃圾回收机制来...
1. **Java堆**:这是JVM(Java虚拟机)用来分配Java对象的内存区域,其最大值可以通过启动参数`-Xmx`来设置。如果不指定最大堆大小,JVM会根据系统物理内存等因素动态调整。建议显式设定最大Java堆大小以避免不可...
6. **内存管理**:初步了解Java的内存区域(堆、栈、方法区等)和垃圾回收机制,包括GC的基本原理和几种垃圾收集器。 7. **IO流**:理解输入/输出流的概念,学习如何使用File类进行文件操作,以及如何使用...
**初步掌握构造方法**:了解构造方法的基本概念及其在初始化对象时的重要作用。 - **专题:方法** 1. **掌握方法的传值调用**:理解如何将参数传递给方法,并探讨传值调用的机制。 2. **掌握方法的重载**:学习...
- 数组是一种存储同类型元素的连续内存区域。 - 集合框架提供了更灵活的数据存储方式,如List、Set、Map等。 4. **方法与函数**: - 方法是用来完成特定功能的代码块,可以被程序中的其他部分调用。 - 函数式...
1. 内存区域:堆、栈、方法区、本地方法栈等内存区域的用途和管理。 2. 对象的生命周期:了解对象的创建、使用和销毁过程。 3. 垃圾回收机制:理解GC的工作原理,了解新生代、老年代、存活代的概念。 4. 性能调优:...
20. **JVM内存管理**:理解JVM的工作原理,包括类加载机制、内存区域划分以及垃圾回收。 21. **单元测试**:学习JUnit框架,掌握编写和执行单元测试的方法。 22. **Maven项目管理**:了解Maven的项目构建过程,...
理解Java内存模型(JMM)对于确保正确性和并发性至关重要。 5. **运算符和逻辑**:实现基本的算术和逻辑运算,如加减乘除、位运算以及条件判断,是计算机功能的基础。 6. **控制流**:包括分支、循环等控制结构的...
8. **模块系统**:虽然Java SE 7并未完全实现模块系统(Project Jigsaw),但它为此做了初步的准备,为后续的Java 9模块化打下了基础。 总的来说,Java SE 7的JVM规范是一次对Java运行环境的全面升级,它在保持向下...
- **JVM内存模型**:理解堆内存、栈内存、方法区等区域的作用,以及垃圾回收机制。 - **设计模式**:熟悉常见的设计模式,如工厂模式、单例模式、观察者模式等,以及何时适用它们。 - **Spring框架**:了解Spring...
- **内存区域**:包括堆内存、栈内存、方法区等,用于存储不同类型的对象和数据。 ##### 2.2 内存模型详解 - **堆内存**:用于存储所有对象实例和数组。 - **栈内存**:用于存储局部变量和方法调用栈帧。 - **方法...
8. **JVM内存模型**:理解JAVA虚拟机的工作原理,包括类加载机制、内存区域划分、垃圾回收等。 9. **JAVA标准库**:介绍常用JAVA标准库的API,如日期时间API、并发工具类、集合的高级功能等。 10. **JAVA开发工具*...
标题中的“通过HSDB来了解String值的真身在哪里1”指的是使用HSDB(HotSpot Serviceability Debugger)...HSDB的使用有助于开发者深入理解Java内存模型和字符串的处理方式,对于优化代码和解决内存相关问题非常有价值。
8. **Java内存模型和垃圾回收**:了解JVM的工作原理,特别是内存区域划分,以及垃圾回收机制。 9. **JVM性能调优**:初步掌握JVM的参数设置,如何进行性能分析和优化。 10. **标准库API**:熟悉常用的Java类库,如...
设计基于Java的简易计算器,旨在帮助学习者掌握Java语言的基础知识,理解面向对象编程的概念,并实践控制流、数据类型和运算符的使用。此外,此项目也旨在提高问题解决能力和代码组织能力,因为一个良好的计算器...
这个例子不仅让初学者掌握了数组的使用技巧,也让他们意识到了在Java中创建数组后,数组变量实际上是引用同一个内存区域,这对于编写无误的代码至关重要。 第三章“运算符、表达式和语句”虽然在文件内容中没有提供...
《理论与实践结合:解密JVM》 ...通过学习这个资料,你将能够掌握JVM的基本概念,理解其内存模型和类加载机制,并具备初步的性能调优能力。理论与实践的结合将使你对JVM的理解更加透彻,进一步提升你的Java开发技能。